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Digital technology is an innovative approach to dentistry. Digital dentistry is the computerization of the 

dental treatment process, which includes digitizing patient management, Computer aided 

design/computer aided manufacturing (CAD-CAM), three-dimensional printing (3DP), computer-assisted 

surgery, artificial intelligence (AI), augmented and virtual reality, robotics, and other technologies (Fig. 1). 

The advancements in technology allow for accurate and efficient performance, which benefits patients 

and clinicians. Due to the rise of digital technologies in the field of dentistry, dental practices have 

transitioned their workflow from using conventional treatment methods to one that uses digital technology 

[1, 2]. 

 

  
Figure 1. The reach of digital dentistry. 

 

Digital workflows have been mostly employed in the dentistry field ranging from implantology, 

prosthodontics and orthodontics to oral and maxillofacial surgery. This enables accurate diagnostics, 

functionally driven planning, computer-assisted treatment execution and follow-up examination [3, 4].  

Digital patient management includes, but is not limited to, hospital admission, electronic patient medical 

records, prescriptions, and billing tracking. 

CAD/CAM system have revolutionized the design and manufacture of restorations. CAD/CAM technology 

enables faster manufacturing times and customized production with high precision. It consists of three 

phases: data acquisition, computer data processing and manufacturing using 3DP or milling [5, 6].  

 

1. 3DP  
3DP, also known as rapid prototyping (RP) or additive manufacturing (AM) , is a manufacturing technique 
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that uses CAD software to reconstruct a 3D digital model, created layer by layer on a 3D printer [7]. This 

revolutionary technology enables the production of working models, implant surgical guides, orthodontic 

appliances, prosthodontic restorations, and maxillofacial prostheses [8].  

 

1.1 3DP applications 
1.1.1 Applications in Prosthodontics 

3D printing technology has drawn a substantial amount of attention in the prosthodontic dentistry field 

due to its personalized, digital and high precision features. It enables the creation of a range of dental 

restorations, including temporary restorations, complete and partial dentures, crowns, and bridges [9]. It 

is expected to replace most of the conventional restorative techniques and has a promising application 

in the fields of restorative manufacturing and aesthetic restoration [10, 11]. 

1.1.2 Applications in Oral and Maxillofacial Surgery 

3DP enables the creation of anatomical models and surgical guides for reconstructive surgery. The 

biggest advantage of using 3DP for jaw reconstruction is that it completely eliminates the disadvantages 

of conventional surgery, which depends on the surgeon's expertise. The digital design, precise excision 

and personalized repair can contribute to more accurate surgery and satisfactory surgical outcomes. In 

addition, the time of the surgical operation is decreased when 3DP is used instead of conventional 

procedures. A 3D printed model of the patient's anatomy can be utilized for preoperative reconstructive 

plate bending, surgical simulation, and patient communication [12]. 

In maxillofacial surgery, soft and hard tissue deformities caused by congenital diseases, trauma, and 

tumors are common. 3D printing technology offers a more personalized approach to jaw and facial 

rehabilitation compared to conventional techniques. This technology enables the creation of custom-fit 

prostheses for defects in the jaw, nasal bone, and maxillofacial region [13]. 

Osteotomy guides and occlusal splints, which enable more precise jaw positions in accordance with the 

virtual planning and reduce complications, are two orthognathic surgery devices that benefit from 3D 

printing [14]. 

1.1.3 Applications in Dental Implantology 

3D printing has numerous applications in dental implantology, including surgical guides, implants, and 

bone augmentation procedures. The surgical guides enhance accuracy and reduce variability due to the 

surgeon's skill. Customized 3D printed implants improve stability through stronger osseointegration with 

the alveolar bone and more closely replicate the stress distribution of natural teeth. The success rate of 

implant surgery for people with insufficient bone volume in the implant location is significantly increased 

by the utilization of 3D printed personalized bone grafts, customized titanium mesh, and bone 
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reconstruction guides [14]. 

1.1.4 Applications in Orthodontics 

3D printing technology has met the increasing demand for precision, comfort, and personalized 

orthodontic care by allowing the fabrication of dental casts, customized brackets, bonding trays, and 

appliances that are tailored to the patient's specific intraoral condition. Guides for orthodontic mini 

implants are created using techniques similar to those used in implant dentistry. While the traditional 

method for making aligners involves thermoforming based on 3D-printed casts, there is now the option 

to directly print aligners using 3D printing technology [5, 14]. 

1.1.5 Applications in Endodontics 

In endodontics, 3D printing is widely used for pulp access guidance, calcified root canal positioning, 

creating extra-apical guide plates, etc [15].  

1.1.6 Applications in dental education 

The realistic 3D printed models have been applied in dental anatomy theoretical teaching or clinical 

training. Anatomical models can be used for educational purposes to improve understanding of organ 

structure. Additionally, 3D-printed models are produced for surgical training and simulation. 3D-printed 

teeth are used for preclinical training such as caries excavation, root canal therapy and crown preparation, 

and have resolved the issue of insufficient extracted natural teeth [7, 16].  

 

1.2 Cost of 3DP 
Due to financial limitations, installing dental 3D printing equipment may not be practical for small and 

medium-sized dental clinic. As the majority of dental clinics are small to medium sized, this poses a 

significant challenge for the market. For advanced image processing and 3D modeling in medical and 

engineering fields, Mimics, a widely used FDA-approved software is relatively expensive, while less 

expensive solutions, like the FDA-approved OsiriX is available. Free software, like 3D Slicer, can only be 

used with properly approved study protocols. On the other hand, the commercial software designed for 

digital workflow in dental practices are generally reasonably priced, such as Onyx-Ceph for orthodontics 

and implant studio for guided implant placement. A wide variety of 3D printers exist on the market, which 

can be further classified as desktop and professional 3D printers. While professional printers are priced 

between $20,000 and $200,000, desktop printers ranged in price from $1500 to $7,000 [17, 18]. In terms 

of cost, it is also necessary to take labor costs, material costs, and 3D printer maintenance into account.  

Due to budgetary constraints, many smaller dental practices may choose to outsource manufacturing to 

a commercial external printing service center. In this instance, however, the speed offered by 3D printing 

might be significantly reduced as delivery time increase, with parts taking days or weeks to arrive at their 
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destination. Therefore, for small and medium-sized end users, the expenses generally outweigh the 

benefits of 3D printing, however certain large clinics and hospitals may be able to purchase 3D printers 

at reasonable prices and receive the full benefits of mass production [19]. Nowadays, the accessibility 

and affordability of equipment and software for printing of casts and CAD-CAM design have improved 

with technological advancements. As a result, many dental offices are now utilizing this technology to 

produce precise and customized restorations in-house, instead of outsourcing to a dental laboratory. This 

approach provides greater control over the final product, faster turnaround times, and cost savings for 

both the dental office and the patient. Nevertheless, if the objective of printing surpasses the printer's 

capacities, such as producing intricate dental products, 3D printing with metals, or fabricating specialized 

anatomical structures, outsourcing may still be indispensable.  

Lack of trained operators is another main obstacle to the widespread use of 3D printing. To effectively 

integrate additive manufacturing into design and production, trained operators are necessary. Employees 

with 3D printing expertise are pretty scarce, and this is further exacerbated by the rapid technological and 

material advancements in the market for dental 3D printing. Training programs available for additive 

manufacturing are scarce, and the large gap between academia and practical applications is pervasive 

in the medical field and difficult to bridge [19]. 

With the technological advancements of 3DP, low-cost desktop 3D printers may be an alternative [20]. 

They can produce clinical acceptable temporary crowns [21], trays and prototypes for denture try-ins [22], 

dental models [23], and anatomical models, such as mandible [24, 25], orbital wall [26] and maxilla [27]. 

Therefore, it is important to assess whether the low-cost printers could offer comparable accuracy to that 

of high-cost printers.  

 

1.3 Accuracy of 3DP 
1.3.1 Factors affecting accuracy of 3DP 

Both accuracy and precision are important factors to consider when assessing the quality of a 3D printed 

model. Precision refers to how consistent multiple 3D printed models are with each other. Precision is 

influenced by various factors, such as the 3D printer's resolution, the quality of the printing material, and 

the repeatability of the printing process. The accuracy of a printed object refers to how closely its size 

and form correspond to the original design model. Accuracy can be impacted by accuracy assessment 

technique and every step of the 3DP procedure, including data collection, computer data processing 

(including segmentation and standard tessellation language (STL) processing), model fabrication, and 

post-processing (Fig. 2) [28].  
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Figure 2. 3D printing of maxillofacial skeletal models 

 

Data acquisition is the first and critical step of 3D printing. The succeeding steps of 3D reconstruction 

and printing can only be carried out successfully if accurate data information is collected. Spatial 

resolution, contrast to noise ratio, and artifact all have an impact on image data quality; for example, a 

thick slice thickness that is unable to capture fine feature details results in low spatial resolution. Accurate 

segmentation depends on the image's quality; for example, high contrast between regions makes 

segmentation relatively easy, while metal artifacts make it difficult [29]. 

Medical image segmentation and STL post-processing are components of computer data processing in 

3D printing. The goal is to separate the desired organ from surrounding anatomy and prepare the 3D 

object for printing. Segmentation starts with the patient's Digital Imaging and Communications in Medicine 

(DICOM) images. Based on the method used, segmentation is categorized into three types: automatic, 

manual, and semi-automatic. Threshold-based segmentation is the most common approach, however, it 

has the potential to produce inaccurate results due to errors related to the selected threshold and the 

usage of manual segmentation when necessary [28]. Following segmentation, the data is frequently 

recorded in the STL file format, which converts all surfaces and curves into a mesh consisting of a series 

of triangles. The STL files are then optimized to be prepared for printing, such as by removing undesirable 

edges or the design of specialized molds. The wrapping and smoothing processes may affect accuracy 

while perhaps improving the model's appearance. Therefore, it is essential to verify the accuracy before 

printing by superimposing the finished STL file over the original image [30]. 

Model fabrication is the process of choosing the appropriate material for the product requirements and 

setting the printing parameters. The STL file model will be "sliced" into a number of cross-sectional files 

by 3D printing software, which will then save them and establish the print volume and path for the 3D 

printer. After the object is printed, a series of post-processing steps are required, such as cleaning with 

chemical solutions, removing the support material and sanding. Since some of these operations are 

typically performed manually, human error is always a possibility [28]. 
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The accuracy of a 3D printed product is influenced by multiple factors in the modeling process, including 

the 3D printing technique used, printing parameter settings, material choice, and model design [16].  

Accuracy varies dependent on the 3D printing technique (Fig. 3).  

 

 

Figure 3. Current 3D printing techniques used in dentistry. Images are reproduced from [8] with 

permission from Elsevier. 

 

The first 3D printing technology utilized for commercial purposes was Stereolithography (SLA), which 

uses an ultraviolet (UV) laser to polymerize a photo-sensitive liquid resin. The build platform is submerged 

in the resin and each layer is cured, causing it to move a distance equivalent to its layer thickness and 

form the next layer, leading to the complete printing of an object. Digital Light Processing (DLP) is similar 

to SLA as it also uses curing, polymerization, and building processes, but instead of a laser, a digital 

projector serves as the light source [31]. In comparison to DLP, the differential curing technique of SLA 

results in greater accuracy and better quality, while the DLP method speeds up production. Photopolymer 

printing technologies such as SLA and DLP have an accuracy of approximately ±0.15 mm. The amount 

of detail increases as laser beam diameter decreases. The speed of printing decreases with the diameter 
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of the laser beam increases, but the workpiece's accuracy and fineness suffer [5]. 

The second most common 3D printing technology, fused filament fabrication (FFF) or fused deposition 

modeling (FDM), is an affordable option. A strand of thermoplastic material is fed into an extruder, heated 

and melted material is squeezed out of a nozzle and layered to build a final product. Some of the most 

frequently used filaments in FDM are polylactic acid (PLA), acrylonitrile-butadiene-styrene (ABS), 

polycarbonate, and polyamide. Its typical accuracy is about ±0.5 mm. The processing time is slightly 

longer since the nozzle's mechanical movement has a speed limit [32]. The width of the extruded filament 

in FFF 3D printing is determined by the diameter of the nozzle, with a range of 0.1-0.4 mm affecting the 

precision of the final product. The printing temperature involves the temperature of the printhead and the 

bed temperature. The bonding, stacking, and flowability characteristics of the material are primarily 

impacted by the extrusion head heating temperature. Excessive temperature during 3D printing can 

cause the material to come out as a liquid instead of a controlled filament form, whereas a low 

temperature may hinder the material from adhering to the bed or separating between layers, leading to 

nozzle blockage [33- 35]. 

Selective laser sintering (SLS) utilizes a laser to fuse powders, including metal, ceramic, and polymer, 

into a solid object. The powder spreader spreads the powder layer by layer on the working table, and 

then the powder is flattened and compacted by the roller. The thickness of each layer of powder 

corresponds to the thickness of the slice of the CAD model. Each layer of powder is selectively sintered 

onto the substrate by the CO2 laser, while the powder not scanned and sintered by the laser remains in 

place for support until the entire part is sintered [14]. SLS has an accuracy of approximately ±0.2 mm. 

Binder Jetting, also known as powder binder printing, ColorJet by 3D Systems, Multi Jet by HP, or 3DP 

by Z Corporation, involves using print heads to apply a liquid bonding agent to a bed of powder to form a 

solid layer [8]. 

Material Jetting or termed Photopolymer jetting (PolyJet) can allow objects to be printed using print heads 

to jet liquid resin droplets that can be cured by UV light. It is capable of printing with multi-material and 

multi-colour. The size of the jetted droplet determines the minimum feature size, which is 0.1-0.3 mm [1, 

8]. 

According to the printer's setting range, users can customize the printing settings, including layer 

resolution, printing speed, filler, etc. These factors will have an effect on the accuracy; for instance, a 

quicker printing speed will result in a lower accuracy. In general, a thinner layer thickness is preferable 

because it produces a higher resolution [1]. 

The accuracy of 3D printing is impacted by the precision of movement of the printer's mechanical controls, 

which may deviate if they do not move as instructed by the software. Factors affecting this include the 
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quality of the printer's components, how well it's assembled, manufacturing accuracy, and operational 

vibrations. In general, desktop 3D printers are less expensive and the mechanical performance of the 

controls differs between high-end and entry-level printers depending on the quality of the mechanical 

components [28, 30]. 

1.3.2 Accuracy of 3DP model 

In 1994, a study was conducted by Barker et al. to evaluate the accuracy of an SLA 3D-printed skull [36]. 

The researchers compared the measurements of anatomical landmarks on cadaveric bones to those on 

3D printed models and found an absolute difference of 0.85 mm, with a range from 0.1 mm to 4.62 mm 

[37]. Since then, similar experiments have been carried out to compare the accuracy of 3D printed models 

in various fields, including craniomaxillofacial and orthopedic, cardiac and vascular. The dimensional 

difference is generally smaller than 1 mm, although in some regions of the model or tissue segmentation, 

it can reach 4–6 mm [28, 30, 33].  

Precise measurement techniques are necessary to determine the size of the 3D printed model. One way 

to do this is by comparing locations of landmarks on both the original and printed models, either manually 

with a caliper or using automated coordinate measurement. Manual measures with calipers are difficult 

to perform accurately due to operator variability, the distinct measured landmark locations, and the 

inability to measure non-linear anatomical structures. Automated coordinate-measuring can be 

programmed to measure landmark positions more accurately. However, only external measurements of 

the model can be made using either manual or automatic measurements [23, 38].  

The alternative measurement technique involves scanning a printed model with a laser or optical device, 

using a CT scan, etc. to create a digitized STL model, and then aligning it with the original STL model 

[38]. The accuracy of a printed model is assessed by a color-coded comparison of the parts with the 

original model. This allows for the calculation of the mean error or mean absolute error (MAE) between 

the printed and original models [39]. The MAE quantifies the overall magnitude of the error, while the 

mean error shows the direction of the error: distinguishing between areas where the printed model is 

inside the original model (negative error) and areas where the printed model is outside the original model 

(positive error). George et al. recommend using MAE instead of mean error to avoid skewing the average 

difference due to the positive and negative errors in the original model [28].  

 

1.4 Haptic feedback of 3DP training models 
Dental hands-on training is essential for teaching dental students the skills and knowledge they need to 

succeed in their careers. Through hands-on practice, dental students can learn and refine complex 

procedures, such as tooth extraction and filling, without the risks and constraints of working on real 
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patients [40]. 

Haptic feedback is a valuable tool for improving the effectiveness of hands-on training in dental education. 

Haptic feedback provides a safe and controlled learning environment for dental students to practice 

complex procedures by simulating realistic touch and force sensations [41]. Dental teaching models 

include cadavers, animals, synthetic models, virtual reality systems, and patient-specific 3D printed 

models. Each type of training model has advantages and disadvantages. Cadavers offer a realistic and 

detailed representation of human anatomy, but they are scarce and costly. Although animal models can 

provide similar haptic feedback to that of real bone, they could not be accurate representations of human 

anatomy and physiology. Synthetic models fabricated by manufactures are easily accessible, but they 

lack the realism and detail of cadavers and animals. Complex procedures can be simulated using virtual 

reality systems, but they could not provide the same level of haptic feedback as hands-on practice with 

physical models [42, 43]. Virtual reality surgical platform has potential to create independent learning 

management, independent simulation practice, and independent assessment functions, and the platform 

can become a new generation of virtual-reality integration of clinical skills teaching system. However, 

there are still many technical challenges in realizing a naturally interactive, highly immersive and easily 

accessible virtual reality medical system [44]. 

Patient-specific 3D printed models offer a customizable and affordable option, a training model providing 

both anatomy and haptics can enhance not only students’ comprehension of dental anatomy, but also 

helps them develop manual dexterity and improve their clinical skills [45, 46]. Models that precisely mimic 

both the biomechanical and visual properties of human tissue are not currently available [47]. However, 

3D printing of biomaterials is developing in the fields of tissue engineering, like degradable tissue 

engineering scaffolds, 3D printed in vitro bionic 3D biostructures, organs and organ regeneration [48]. 

Personalized biodegradable tissue engineering scaffolds will provide a new way to repair bone/ cartilage 

tissue, skin tissue, etc.; the development of bio-3D printed in vitro biomimetic bio-structures will be of 

great value for short time and high throughput screening of new drugs; bio-3D printed organ regeneration, 

if realized, will have profound implications for organ transplantation. However, due to the limitations of 3D 

printers, suitable 3D printed biomaterials are currently limited, and the quality needs to be further 

improved. This work may help discover materials that can be used to create products for anatomical 

teaching or surgical simulation [47]. 

Currently, many researchers are attempting to visually and haptically construct replicas that resemble 

real organs in the field of education. Each tissue and organ in the human body has distinct physical and 

mechanical characteristics. Different tissues and organs of the human body have their own unique 

physical and mechanical properties. From skin, muscle, cartilage to hard bone, the selection of materials 
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corresponding to the tissue properties during 3D printing is required [47].  

Depending on the usage, different materials can be employed for 3D printing manufacturing. The most 

commonly used 3DP materials are liquid, filament or powder based and consist of metals, ceramics, 

polymers, resins, and plastics. The main metallic materials include stainless steel alloys, cobalt-based 

alloy, titanium and its alloys. Zirconia and alumina are the two ceramic materials that are most frequently 

utilized. The most popular polymers are polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS), 

polylactic acid (PLA), polymethylmethacrylate (PMMA) and polyether ether ketone (PEEK) [8].   

Haffner et al. researched the 3D printed materials that best replicate the visual and tactile properties of 

the human temporal bone. They found that polyethylene terephthalate (PETG) had the most realistic feel, 

followed by polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), poly-carbonate (PC), and nylon 

[49]. 

The mechanical properties (e.g. tensile strength and elastic modulus) of the 3D printed material should 

be in accordance with the biomechanical characteristics of the tissue [16, 37]. For 3D printed bones, there 

are two types: cortical bone and trabecular or cancellous bone, with different mechanical properties due 

to their different structures. Cancellous bone forms the inner part of the bone, while cortical bone is the 

outermost denser boundary. The mechanical characteristics of the tissue are impacted by each level of 

bone structure. One of the challenges of replicating bone for surgical teaching is to mimic trabecular bone 

[47]. The structure of bone would have to be replicated in order to mimic its haptic feedback and 

mechanical characteristics, particularly its elastic modulus and hardness, has not been achieved in 

dentistry yet [50].  

 

2. Computer-assisted surgery 
The demand for implant surgery has increased as it becomes more and more popular for oral 

rehabilitation. The complications of implant surgery have emerged as a significant factor influencing the 

implant long-term stability. The "standardized and accurate" implant treatment is essential for reducing 

complications and ensuring long-term stability, especially for inexperienced practitioners. 

CT scans offer high resolution and are increasingly being used for preoperative diagnosis and implant 

planning. Cone-beam computed tomography (CBCT) is a cost-effective option that exposes patients to 

lower radiation levels compared to conventional CT scans. Implant planning software allows doctors to 

create 3D reconstructions of a patient's soft and hard tissues. The digital information data, such as CBCT 

scan data in DICOM format and intraoral scanned (IOS) data in STL format, is uploaded for 3D virtual 

reconstruction [51]. Thereafter, the surgeon can plan the implant placement by considering the restorative 

needs, using 3D models reconstructed from axial, coronal, and sagittal views. This helps the surgeon 
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understand the anatomy of the jaws and determine the height and width of the alveolar bone at the 

edentate area. Computer-assisted surgery enables a precise transfer of the surgical planning for the 

virtual implant to the actual clinical surgical operation and assisting in the achievement of the expected 

accurate and aesthetically pleasing implant restoration results. The computer-assisted surgery is typically 

classified into static surgical guide and dynamic navigation system. The former acquires data from CBCT 

and converts it into a surgical guide that statically guides the implant surgery. The latter is a virtual implant 

planning design that dynamically realizes real-time position and navigates during implant surgery [52]. 

Computer-assisted surgery offers the following benefits:  

1) Increased safety by preventing damage to important structures such as the maxillary sinus and 

mandibular canal, avoiding adjacent teeth, and enhancing operation safety. Computer-assisted 

implant surgery makes flapless implant placement possible, which lowers the risk of bleeding and 

postoperative morbidity, permits immediate loading to fulfill the patient's functional needs, shortens 

post-operative duration of discomfort, and improves the patient’s satisfaction.  

2) Precise placement of implants through preoperative planning and 3D positioning, leading to better 

aesthetic outcomes and improved superstructure fabrication. 

3) In some cases, it may allow the use of existing bone, reducing the need for additional bone 

augmentation surgery and reducing operation time and follow-up visits [51]. 

 

2.1 Static surgical guide 
Surgical guides are physical templates that are custom-made to fit the patient's jaw. The surgical guide 

helps in accurately transferring the virtual position of the planned implant to the actual surgical location 

during the procedure. They can be used to guide the drill and ensure that the implant is placed in the 

correct location. In addition to the benefits of computer-assisted surgery, there are also disadvantages to 

surgical guides:  

1) Production of static surgical guides is costly and labor-intensive.  

2) The guide's stability during the implant placement depends on the way the guide is supported (Bone-, 

Tooth- or Mucosa- Supported) and is directly impacted by the mucosa or bone protrusion.  

3) When the implant site is close to the adjacent teeth, the conduit of the guide tends to interfere with 

the implant placement.  

4) The implant plan cannot be temporarily adjusted, the guide prevents rinsing, and the guide is prone 

to heat generation during drilling.  

5) The limited operable space in the area of molar makes it challenging to do the operation with direct 

vision, which reduces the operator's tactile sensitivity and leads to more angular deviation [52].  
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2.2 Dynamic navigation system 
The navigation system provides real-time guidance by monitoring the movement of the drills and implant 

in line with the pre-planned virtual design. It utilizes pre-operative imaging data obtained from CT or CBCT 

scans to create a 3D representation of the patient's jaw and teeth. This information is then used to create 

a surgical plan. During the surgery, the navigation tracing mark is attached to the patient's jaw. An 

essential part of using a dynamic navigation system is calibration. It involves registering the navigation 

system with the patient's jaw using a series of landmarks, enabling the system to precisely align the jaw's 

position and provide accurate guidance. In order to use optical tracking to track the position of the surgical 

instruments, each instrument's navigation tracing mark must be calibrated prior to use. This information 

is then used to provide real-time guidance, showing the surgeon the precise location and angle for implant 

placement [53]. 

Numerous studies have shown that dynamic navigation can achieve good clinical results in solitary 

implants, implants in edentulous jaws, pterygomaxillary and zygomatic implants, etc [54, 56]. The benefits 

of using a dynamic navigation technique include:  

1) Improved safety and predictability of the surgical procedure through real-time navigation during 

surgery.  

2) Surgical plans can be adjusted and changed at any time during surgery.  

3) Different implant systems can be used universally.  

4) Thermal damage is less likely with more sufficient cooling than static guides.  

5) Reduced requirements for mouth opening [51]. 

 

Limitations of the dynamic navigation system include:  

1) The complex preoperative registration and calibration steps which can prolong the surgical time, and 

may require specialized training to use effectively.  

2) To enable the acquisition of signals from various angles and to simplify operator operation, the design 

of the navigation handpiece marker and bone tracing marker should be more lightweight.  

3) To prevent the need for recalibration owing to changes in handpiece angles during surgery, it is 

important to improve the tracking method to achieve all-around capture of the implant handpiece and 

dental position information.  

4) The cost of purchasing and maintaining navigation systems can be high, and insurance may not 

cover it [55].  
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2.3 Accuracy of computer-assisted surgery 
Currently, there are three methods for performing dental implant surgery: manual (freehand), static guide, 

and dynamic navigation. Although the three methods have very different clinical protocols, numerous 

studies have proven that all of them may successfully insert dental implants [51, 57]. Accuracy is an 

important reference for the clinician to evaluate a particular method [58]. 

Tahmaseb's meta-analysis on implant placement found that the surgical guide group had an error of 1.2 

mm and 1.4 mm in the deviation at the entry and apex, and a 3.5° angular deviation. When using the 

freehand method, a 9.9° angular deviation and errors of 2.7 mm and 2.59 mm were observed at the 

coronal and apical parts of the implants, respectively [51, 58]. A meta-analysis of dynamic implant 

placement showed linear deviations of 0.81 mm and 1.30 mm for the implant entry point and the apical 

point respectively, and 3.8° angular deviations [55]. The literature indicates that guided implant placement 

accuracy in edentulous jaws is considered clinically acceptable, with angular deviations ranging from 2.4° 

to 4.9°, entry deviations from 0.5 mm to 1.4 mm, and apical deviations from 0.76 mm to 1.6 mm [59]. 

The static surgical guide consists of two components: a resin base and a metal sleeve. The sleeve height 

and the distance from the alveolar ridge can significantly affect the static guide's precision [60]. Errors in 

a surgical guide can result from several factors, including the design and manufacturing of the guide. The 

surgical guide's tolerance for the sleeve and drill and the digital workflow that was used to create it—

including data acquisition, software processing, and template production—can lead to deviation [61]. 

Dynamic navigation systems' clinical accuracy can be impacted by various factors like CBCT acquisition, 

calibration and registration, and the operator's performance, all of which can affect the precision of the 

final implantation [57]. Systematic errors such as those resulting from the software and hardware of the 

navigation system, as well as the CBCT imaging equipment, are challenging to minimize in practical use. 

The most significant impact on navigation accuracy is the registration error and calibration error, such as 

whether the distribution of calibration marker points is reasonable, whether the calibration and tracking 

device are stable, and whether the registration image is clear [52, 62]. The operator's experience also 

greatly affects the accuracy of guided surgery. Although guided surgery can assist novice practitioners in 

placing implants with improved accuracy and results similar to experienced practitioners, surgical 

experience still has a significant impact on the accuracy of the guided procedure [63]. 

 

2.4 Experience of operators 
Most implant surgeries are performed using the freehand method in clinical settings. The clinician usually 

relies on anatomical landmarks of adjacent and contralateral teeth to prepare the implant osteotomy and 

complete the implant placement. Freehand implant insertion relies mostly on the surgeon's surgical 
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experience for implant placement safety and final restorative outcomes [59]. 

Compared to conventional implant techniques, the static and dynamic guided approaches provide novice 

practitioners with improved accuracy in implant placement [63-65]. Although dynamic navigation 

techniques may shorten the learning curve for clinicians, they still require the operator to practice 

repeatedly and gain experience in its use [62, 65, 66]. There is not enough evidence to evaluate the 

accuracy and efficacy of novice versus experienced surgeons when placing dental implants utilizing 

guided and freehand techniques. It’s important to evaluate whether navigation and surgical guide 

methods can enhance novice surgeons' surgical performance as compared to freehand surgery, with the 

performance of experienced surgeons serving as a reference. 

 

3. Artificial intelligence 

3.1 Artificial intelligence in medical imaging 
Medical imaging is a crucial source of information for disease screening, diagnosis, and treatment, 

encompassing various fields such as medical imaging, image processing, visualization, early disease 

screening, risk prediction, disease detection and diagnosis, surgery planning, assisted navigation during 

surgery, postoperative tracking, and rehabilitation planning [67]. As a result, the use of artificial 

intelligence and big data-based technologies in medical imaging has become a focus of interest for 

medical organizations and research [68, 69]. 

Medical imaging consists of two parts: imaging and image mining. Firstly, the quality of medical imaging 

equipment is critical to the success of detection, diagnosis, and treatment of diseases, as it provides the 

information used. AI-optimized scanning workflow can greatly increase scanning efficiency and 

standardize imaging quality [70]. Secondly, a crucial step in the diagnostic and treatment process is 

understanding medical images and extracting key information that might help with treatment and 

diagnosis decisions. The interpretation of a large amount of image information increases the demand on 

physicians' medical imaging knowledge and increases their time to review the images. Artificial 

intelligence-assisted diagnostics can automate the time-consuming task of screening for lesions, quickly 

extracting important diagnostic information from large amounts of data and reducing the risk of 

misdiagnosis or missed diagnoses by minimizing human subjectivity in the review process. The use of AI 

in medical imaging can speed up complex image processing tasks, such as segmentation and registration, 

providing precise structural information about lesions for medical devices used in treatment like surgical 

navigation systems and robots [71- 73]. 

In recent years, artificial intelligence has gained popularity as a research topic in computer-assisted 

diagnosis, due to its capability to automate tasks in a way that mimics human intelligence [74]. Machine 
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learning (ML), which is the most prevalent AI technology, uses large datasets to train mathematical 

models, allowing computers to learn without being explicitly programmed [71]. Among them, deep 

learning algorithms, a subcategory of ML, are even more widely studied and used at this stage, being 

applied in tasks such as image segmentation, image feature extraction, classification, and target 

detection [68]. The scenarios applied are the segmentation of human structure and lesion areas, early 

diagnosis of diseases, detection of anatomical structures and lesion areas [72]. Deep learning (DL) is 

called "deep" because it is organized in layers on multiple levels and can automatically extract meaningful 

features from big data [75]. 

Currently, convolutional neural network (CNN), a subset of DL, is extensively utilized in medical image 

processing. CNNs are now considered as the most advanced method for image segmentation, 

classification, prediction, image enhancement and treatment planning. U-Net is a well-known deep 

learning structure commonly utilized for semantic segmentation tasks. As shown in Fig. 4, it was 

introduced in 2015 by Ronneberger et al, and has since become a widely adopted model for image 

analysis and medical imaging applications[76-79]. The architecture of this model includes a contracting 

path that captures the contextual information from an input image, and a symmetric expanding path that 

maps the low-level features to the desired output. The unique U-shaped architecture of the model allows 

it to effectively capture both local and global information, making it well-suited for dental image analysis. 

In dentistry, the U-Net algorithm has been utilized for tasks such as segmentation of teeth [77, 78], oral 

lesions [79] and metal artifact reduction [80] in dental images, enabling more accurate and automated 

diagnoses [81, 82].  
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Figure 4. U-net model for biomedical image segmentation. Images are reproduced from [79] with 

permission from Springer Nature  

 

Pros of U-Net for dental applications: 

1) Good at handling complex and small structures in medical imaging: U-Net architecture, with its 

symmetrical design, is especially suited for image segmentation tasks where small objects need to 

be distinguished and located within larger structures. This makes it ideal for dental applications where 

teeth and other small structures need to be accurately segmented from surrounding tissue. 

2) U-Net has a strong capability for segmentation tasks: The U-Net model is based on a fully 

convolutional network and was originally developed for biomedical image segmentation. This makes 

it well-suited for dental image analysis tasks that require segmentation, such as tooth detection and 

extraction, and root canal segmentation [83]. 

3) Good performance in reconstructing fine details in images: U-Net has a strong ability to reconstruct 

fine details in images by using skip connections [84] that allow the network to propagate high-

resolution information from earlier layers to later layers. This makes it useful for dental applications 

where fine structures, such as tooth cracks [85] and fissures [86], need to be accurately segmented 

and analyzed. 

 

Cons of U-Net for dental applications: 

1) May be computationally expensive to train and use: U-Net's large number of parameters, as well as 
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its use of multiple convolutional and up-sampling layers, can make it computationally expensive to 

train and use [87]. This may limit its utility in resource-limited environments, such as mobile devices 

and low-power hardware. 

2) U-Net may not be suitable for tasks requiring large amounts of context information: U-Net is designed 

for image segmentation tasks, where local context is important. For tasks that require a larger context 

[88, 89], such as tooth classification and diagnosis, other architectures may be more appropriate. 

3) May be vulnerable to overfitting if the amount of training data is limited: Due to its large number of 

parameters, U-Net may have a risk of overfitting if the training data is limited [90, 91]. This can lead 

to poor performance on new, unseen data. 

Recently, a 3D U-Net was introduced for segmenting biomedical images and has gained widespread 

usage in dentomaxillofacial radiology [68, 92- 99]. 

 

3.2 Challenges of AI application in healthcare 
3.2.1 Data sources and quality problems 

Big data, algorithms, and computing power are the three cornerstones of artificial intelligence. Among 

them, "massive, accurate, high-quality" big data is the basis for the realization of artificial intelligence. 

Medical data involving ethics, on the one hand, are difficult to obtain in a way that the data are numerous 

and complicated, and the fragmentation of information is still a problem; on the other hand, there is little 

data of high quality, and after getting the data, they have to be precisely labeled by experts, and the 

quantity and quality of labeling also directly affect the whole data set. In addition, each unit has its own 

database, and the data of each disease and its form are different, and there is no unified standard to 

integrate them, and there is also a lack of a large public database system [100]. High-quality data is the 

primary prerequisite for AI development. Errors or biases in the training database are often directly 

reflected in model behavior and have a significant impact on both model performance and clinical 

outcomes, so data quality is essential to unlocking the value of big data in healthcare [70]. 

3.2.2 Problems with AI algorithms 

The complexity of the clinical problem requires a deepening of the neural network layers, and the 

complexity of the model does not match the amount of data corresponding to it. The model is too complex 

and the learning capability is so powerful that it learns the features of the data itself in the training set, 

which leads to overfitting of the algorithm; the complexity of the model is much lower than the amount of 

data that matches it, which leads to low learning capability of the model and produces underfitting. While 

underfitting can be solved by increasing the amount of data and the number of training sessions, 

overfitting is more difficult to solve and is a problem often encountered in deep learning. Especially in 
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practical medical applications, AI algorithms must be rigorously tested and evaluated, otherwise they can 

lead to medical errors and disputes and trigger large-scale medical risks [100].  

In addition, the subjectivity of the algorithm and the "black box" of the algorithm cannot be ignored [75]. 

Currently, the most widely used deep learning algorithms in medical AI utilize extensive neural networks, 

with many hidden layers, that have strong self-learning and self-programming capabilities. However, this 

complexity leads to a lack of interpretability and transparency in the AI system, making it a "black box" 

that is difficult to understand the relationship between inputs and outputs. The consequence of the "black 

box" is that it's challenging to assess AI's errors and it cannot be effectively monitored [100]. If the data 

used for algorithm training is incomplete, inaccurate, or contains some subjective bias or discrimination, 

it is possible to replicate and amplify these "flaws" in algorithm training, and finally obtain biased or even 

wrong prediction results. As a result, certain groups of people are treated in a discriminatory manner in 

medical assessments, which may even lead to medical safety incidents. At the same time, the medical 

industry is concerned with human life and health. Lack of understanding of the decision-making process 

of the model will make it challenging for people to trust medical AI [70]. 

 

4. Aims and hypotheses 
The purpose of the PhD project was to study the impact of digital technologies on dentistry and to explore 

how digital dentistry can simplify workflow through the use of 3D modeling and AI assistance.  

 

This doctoral thesis is divided into three parts, each with its respective objectives. 

 

Part I：3D modeling 

(A) Accuracy assessment 

Numerous studies have shown that creating patient-specific skeletal models using affordable desktop 

printers is clinically acceptable. However, there isn't enough evidence to compare the accuracy of desktop 

and professional printers in producing maxillofacial skeletal models.  

 

The objectives were:  

- To report the current evidence on the accuracy of maxillofacial skeletal models produced by 

desktop and professional 3D printers, and to investigate any potential contributing factors that 

may impact the accuracy of 3D printed models. 

- To investigate the efficacy of CBCT-derived skull models produced by 3D printers at different 

cost levels. 



 
General introduction | 20 

 

The hypothesis was that: 

Maxillofacial skeletal models produced by low-cost desktop printers could offer comparable accuracy to 

that of high-cost professional printers.  

 

(B) Haptic feedback 

3DP has been successfully employed in the production of the patient-specific skeletal model with 

anatomical replication, however it is unknown if these models can provide the optimal haptic feedback 

for simulating dental implant surgery. Therefore, it is crucial to investigate the haptic feedback of these 

models for hands-on dental implant training. 

 

The objective was: 

- To analyze the haptic feedback of different 3D-printed models for simulating dental implant 

surgery. 

The hypothesis was that: 

The haptic feedback of different 3D-printed models using various technologies and materials would be 

similar. 

 
Part II: Computer-assisted surgery on 3D-printed models 

Recently, computer-assisted surgery has demonstrated to enhance implant placement accuracy for 

novice surgeons. However, no evidence has been proposed in the literature for assessing the 
performance of novice compared to experienced surgeons for dental implant placement with freehand, 

static and dynamic guided approaches. The guided approaches may be beneficial in training novice 
surgeons for successful dental implant surgery. 

 

The objective was: 

- To investigate the accuracy and efficacy of novice versus experienced surgeons for dental 

implant placement with freehand, static guided and dynamic navigation approaches. 

The hypothesis was that: 

Considering the performance of experienced surgeons as a clinical reference, the use of dynamic 

navigation and static guided approaches could improve the surgical performance of novice surgeons 

compared to freehand approach.  

 

Part III: Artificial intelligence 

The existing application of deep learning is mostly focused on a single task. Building an online platform, 
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which integrates data from multiple imaging modalities, may create the digital virtual patient for automatic 

anatomy detection, treatment planning and surgical simulation. In addition, the efficient, accurate and 

consistent result of automatic anatomical segmentation can be used for 3D printing. The online cloud-

based platform has been constructed to detect teeth, nerve and bone structure in CBCT. Intraoral scans 

(IOS) are taken as an essential aid for providing more precise information of teeth morphology. IOS data 

is a vital part for creating virtual patient by integration with CBCT data. 

 

The objective was: 

To propose a deep learning-based convolutional neural network for automated tooth segmentation on 

intraoral scanned images.  

 

The hypothesis was that: 

A deep CNN approach would provide a segmentation of teeth on intraoral scanned images that is more 

accurate, consistent, and time-efficient compared to semi-automatically assisted segmentation.  
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Abstract 
 
Objectives: The present review systematically analyzed the accuracy of three-dimensional (3D) 

maxillofacial skeletal models generated from desktop and professional 3D printers.  

Data/sources: Electronic literature search was conducted in the following databases: PubMed, Embase, 

Web of Science and Cochrane Library up to September 2020. Two reviewers independently performed 

the study selection, data extraction and quality assessment of the included studies. Risk of bias was 

assessed using the Joanna Briggs Critical Appraisal Checklist for Diagnostic Test Accuracy.  

Study selection/results: The search strategy retrieved 5680 articles. Following removal of duplicates, 

title and abstract screening and full-text reading, 20 publications were eligible to be included in the review 

which focused towards the accuracy of skeletal models generated from either desktop or professional 

printer. Both types of printers were defined based on their cost, size and layer thickness, where desktop 

printers cost between $1500–$7000, have a build size of 10×10×10 inches or less and a minimum layer 

thickness of 100 µm. Whereas, the professional printers’ cost was between $20,000- $200,000 with a 

build size of 12×12×12 inches or more and a layer thickness of as less as 3 µm. The risk of bias was 

found to be low to moderate. Meta-analysis results indicated no significant mean absolute error (MAE) (p 

= 0.9487) between desktop (0.12 mm, 95% CI: 0.00–0.27 mm) and professional printers (0.10 mm, 95% 

CI: 0.04–0.16 mm). Amongst the printing technology, material jetting (0.09 mm, 95% CI: 0.00–0.17 mm) 

and selective laser sintering (0.09 mm, 95% CI: 0.00–0.26 mm) offered the lowest MAE and the highest 

difference was observed with the fused deposition modeling (0.22 mm, 95% CI: 0.00–0.53 mm).  

Conclusions: The maxillofacial skeletal models generated from desktop printers offered comparable 

accuracy to that acquired with professional printers.  

Clinical significance: The desktop 3D printers may be a viable option to print maxillofacial skeletal 

models for surgical planning, simulation, guide manufacturing and education purposes. 

 

 

Keywords: Printing, three-dimensional; Computer-aided design; Dimensional measurement accuracy; 

Tomography 
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1. Introduction 
Since the introduction of three-dimensional (3D) printing also known as additive manufacturing (AM) or 

rapid prototyping (RP), various 3D printing techniques have been developed [1]. The major RP 

technologies used in the maxillofacial field include stereolithography (SLA), selective laser sintering (SLS), 

fused deposition modeling (FDM), binder jetting (BJ), material jetting (MJ) or termed polyjet, digital light 

processing (DLP), and selective deposition lamination (SDL) [2]. These printing technologies have been 

largely applied for the production of patient-specific skeletal models for pre-operative planning, clinical 

education and research [3].  

The 3D models are commonly utilized for the production of surgical guides and contouring of the 

osteosynthesis or reconstruction plates at the treatment planning phase of various oral and maxillofacial 

surgical procedures [4]. The pre-bending of plates on a 3D model has also been known to offer higher 

precision compared to the conventional intraoperative approach [5]. Furthermore, the physical 

manipulation of the anatomical structures on a model during planning of the complex surgical procedures 

allows more control and better comprehension of the different surgical approaches, thereby allowing 

surgeons to be familiarized with intraoperative situation beforehand and lead to predictable intra-

operative results [6]. 

The most essential characteristic of a skeletal model is its accuracy [7]. An accurate and realistic 3D 

printed maxillofacial skeletal model has been known to decrease the operation time, bleeding time and 

patient's postoperative morbidities [8]. If a model does not offer optimal dimensional accuracy then it 

might lead to an inaccurate pre-operative evaluation and measurements, ill-fitting guides or plates intra-

operatively and an unpredictable treatment outcome [9]. From a clinical teaching perspective, 

anatomically accurate models with a haptic feedback to that of a real bone are a necessity for improving 

the psychomotor, cognitive and affective skills of the residents, and for the reconciliation of the prior 

knowledge gained from the traditional teaching methods [10]. The combination of anatomical teaching 

and surgery simulation on the 3D models allows the residents to be better oriented in the operating room 

[11]. A model which fails to accurately depict the actual anatomical or pathological scenario might cause 

the trainees to sub-optimally translate their skills during a real surgical procedure [12]. 

The production of the skeletal models can be achieved with either a desktop/consumer-grade or a 

professional printer [13]. The difference between these two types of printers is dependent on three main 

factors which include, printer cost, build size and layer thickness [14, 15]. The desktop 3D printer usually 

costs between $1500 and $7000 [16] with a build size of 10×10×10 inches or less and offers a layer 

thickness of approximately 100 µm. In contrast, professional printers mostly cost between $20,000 and 

$200,000 with a build size of 12×12×12 inches or more and a layer thickness of as low as 3 µm [17]. The 
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issue of high cost, availability of trained operators and expensive printing material associated with 

professional printers is of major concern which limits its widespread implementation in hospitals [18]. 

Although 3D printing of skeletal models was previously restricted to high-end professional printers, 

nevertheless, recent technological advancements have led to the development of more affordable 

desktop printers offering an improved accuracy [13]. The accuracy of a 3D printed skeletal model is 

greatly dependent on the image acquisition and manipulation, model fabrication and finishing process, 

as well as the precision evaluation approach [7]. A dimensional error within the range of 2% variation has 

been proposed to offer clinically acceptable accuracy for 3D printed skeletal models [19]. Since the past 

few years, the desktop 3D printers have undergone innovative changes allowing the production of cheap 

and accurate models [17]. The technologies such as FDM, SLA, DLP and SLS have been incorporated 

into the desktop printers with a wider range of materials, taking its performance equal to that of the 

professional applications [15]. Many studies have reported that cost-effective desktop printers are 

clinically acceptable for producing patient-specific skeletal models [20-22]. However, there is lack of 

evidence related to the accuracy comparison of desktop and professional printers for the production of 

maxillofacial skeletal models. Therefore, the aim of the systematic review was to compare the accuracy 

of the maxillofacial skeletal models generated from desktop 3D printers compared with professional 3D 

printers. 

 

2. Methods and materials 
The systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines [23]. In addition, the study protocol was registered in the PROSPERO 

database under the number CRD42020168236. 

 

2.1 Review question  
The focused question was structured according to the PICO (Population, Intervention, Comparison, and 

Outcome) principle: “Do the 3D printed maxillofacial skeletal models (P) generated by desktop or 

professional printers (I) offer the same two-dimensional (2D) or three-dimensional (3D) dimensional 

accuracy (O) in comparison to the reference model (C) ?” 

 

2.2 Eligibility criteria  
All study designs including in-vivo or in-vitro experiments which evaluated the accuracy of 3D printed 

human maxillofacial skeletal models of any sample size utilizing desktop or professional 3D printers were 

selected for this review. Case report, case series, pilot studies and comparative studies were also 
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included in the review. Exclusion criteria were non-English articles, animal studies, review articles or 

editorial comments. 

 

2.3 Search strategy and data collection  
An electronic search was performed in PubMed, Embase, Web of Science and Cochrane Library up to 

the period of September 2020. Search strategy was prepared with the help of a librarian and is presented 

in Supplementary Table 1. The mesh search term used were "Printing, Three-Dimensional", "Jaw", 

"Mandible", "Maxilla" and "Skull".  

Following removal of duplicate studies, two reviewers independently screened the relevant articles based 

on the titles and abstracts, and then read the full text of the included studies. The categorization of the 

printed as desktop or professional was performed by either searching for the pertaining information from 

within the published articles or manufacturers website. Two reviewers extracted the data and any 

disagreement was resolved through consensus. Grey literature and references within the selected studies 

were also screened. The Kappa statistic was reported to assess the agreement between the reviewers 

for the selection process.  

The data extracted from the selected articles included title, author, year of publication, skeletal structure 

assessed, sample size, imaging modality, printer type as desktop or professional printer, printing 

technique, printing material, printing settings, layer resolution, assessment methodology and accuracy. 

The corresponding author of included articles were contacted for the provision of missing data. 

 

2.4 Critical appraisal  
Risk of bias was assessed according to the Joanna Briggs Institute (JBI) through the Critical Appraisal 

Checklist for Diagnostic Test Accuracy [24]. The tool was modified to allow for better interpretation of the 

methodological quality. We focused on the questions to observe for the potential problems in the way the 

index test was conducted and interpreted. In the present review, the following question was modified “If 

a threshold was used, was it pre-specified?” and split into three questions: 1. Were the imaging modality 

and parameters described; 2. Was the measuring protocol described; 3. Was the layer resolution 

described? Two reviewers judged each question as yes, no or unclear. 

 

2.5 Statistical analysis  
A meta-analysis was conducted with R software (version 3.5.2) to compare the accuracy of desktop and 

professional 3D printers based on the mean and absolute mean difference and standard deviation. The 

heterogeneity was investigated using Q-value and I2 statistics. Kendall's tau was applied to assess the 
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publication bias and data were pooled using a fixed-effects model to generate a forest plot. A p-value of 

less than 0.05 was regarded as statistically significant. 

 

3. Results 
3.1 Study selection 
After eliminating duplicates, 3429 articles were retrieved; 3405 were excluded based on the title and 

abstract (Fig. 1). The remaining 23 studies were analyzed in full and 3 articles [19, 25, 26] were excluded 

which did not match the inclusion criteria, resulting in 20 articles being eligible for the systematic review. 

The Kappa value for the agreement between the reviewers was 0.856, which was categorized as an 

almost perfect agreement according to Landis and Koch [27]. 

Five studies evaluated the model accuracy utilizing 3D measurements [13, 18, 28-30], whereas 15 articles 

performed 2D measurements [9, 20-22, 31-41]. The quantitative synthesis only included 5 articles which 

offered a similar three-dimensional methodology of evaluation and provision of the accuracy as the mean 

or absolute mean difference between the reference and the printed model. 

The 3D evaluation in the studies was performed by an objective color-coded part comparison analysis, 

which allowed calculation of the mean or mean absolute error between the superimposed original and 

printed skeletal structure in a Standard Triangle Language (STL) format. The mean difference refers to 

the difference with the direction of error, while the mean absolute error quantifies the overall magnitude 

of the error. The studies assessing accuracy based on the 2D linear and/or angular measurements were 

excluded from the meta-analysis due to the heterogeneity of landmark selection and assessment 

methodology. 

 

3.2 Study characteristics  
The sample size ranged between 1 and 50 printed anatomical models generated from dry human bone 

[18, 20, 22, 29, 31, 32, 34-38, 41], fresh cadaver [9] or patient data [13, 21, 28, 30, 33, 39, 40]. The 

included studies focused primarily on printed skeletal models of the mandible (n = 11, 55%) and 

craniomaxillary complex (n = 9, 45%). The skeletal structures printed in the craniomaxillary region 

involved craniofacial region, maxilla, midface, orbital region, skull base and whole skull. A summary of 

the methodologies utilized for preparing the skeletal models and the method of analyzing their accuracy 

is shown in Supplementary Table 2. The included studies reported that the computed tomography (CT)/ 

cone-beam CT (CBCT) threshold value for reconstructing the model were determined empirically or 

(semi-)automatically ranging from 500 to 4000 HU for mandible [21, 33, 37] and 400 to 4000 HU for 

craniomaxillary complex [33, 35, 37]. The reference models included: dry skull (n = 10), fresh skull (n = 
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1), patient's CT image (n = 3), STL generated from patient's CT (n = 3) or STL generated from dry skull 

(n = 2). In addition, one study utilized the model printed with professional printer as a reference [21]. 

 

 
Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flowchart of included 

studies. 

 

3.3 Risk of bias  
The risk of bias was found to be low to moderate and the domains which introduced bias were patient 

selection, index test and reference standard (Supplementary Table 3). The main methodological 

limitations were related to the index test because some studies did not explicitly provide the fabrication 

procedure and parameters regarding the printer classification, material, layer resolution, printer settings 

and post-processing. The imaging modality and parameters were unclear related to the CT/CBCT's field 

of view, voxel size and slice thickness. The “consecutive or random sample of patients enrolled” and 
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“reference standard results interpreted without knowledge of the results of the index tests” were unclear 

in all selected studies. 

 

3.4 Qualitative synthesis  
The selected studies evaluated the accuracy of 43 printing systems utilizing seven different 3D printing 

technologies. FDM technology was employed in 11 systems (25.6%), SLA in 8 (18.6%), SLS in 7 (16.3%), 

MJ in 6 (13.95%), BJ in 6 (13.95%), DLP in 4 (9.3%), and SDL in 1 (2.3%). 

Supplementary Table 4 describes the 2D accuracy of the models. The accuracy of mandibular printed 

models with desktop printers varied between 0.145 mm-0.65 mm [20-22, 31]. For professional printed 

models, accuracy ranged between 0.079 mm-1.44 mm [31-34, 36-38]. The accuracy of professional 

printers for printing a craniomaxillary model, ranged between 0.108 mm-1.98 mm [9, 31, 33, 35-37, 40, 

41], whereas, only one article reported on the accuracy of printing with a desktop printer (0.28 mm) [31]. 

One article [39] reported on an overall accuracy of a full cranio-facial skeletal model (craniomaxillary 

complex + mandible) and found a mean difference of 0.7±0.9 mm between the real anatomical structure 

and printed model. Based on the layer resolution, 500 μm FDM models had approximately double the 

error compared to the 100 μm or 250 μm resolutions, both of which showed similar accuracy [31]. 

Supplementary Table 5 describes the 3D accuracy of the models. Three selected studies assessed the 

accuracy as absolute value [18, 28, 30] and two studies provide mean value [13, 29]. Based on the 

absolute value, the accuracy of desktop printed mandibular models varied from 0.08±0.08 mm to 

0.60±0.72 mm [18, 28]. For professional printed models, results ranged from 0.07±0.05 mm to 0.15±0.17 

mm [28, 30]. Whereas, based on mean values, the mean differences of desktop printed mandibular 

models was within the range of −0.01±0.16 mm and 0.23±0.39 mm, whereas the professional showed a 

discrepancy from −0.07±0.08 mm to 0.17±0.13 mm [13, 29]. 

 

3.5 Quantitative synthesis  
The 3D accuracy of models was compared based on the type of printers (desktop printer and professional 

printer), printing technology and layer resolution. The included studies analyzed the data based on either 

mean or absolute mean, which was the basis of the meta-analysis [42]. The p-value of the heterogeneity 

was not significant, thereby, a fixed effects model was used. 

In relation to the printer type, the accuracy of desktop was considered comparable to that of professional 

printers with low heterogeneity in both subgroups. The professional printer was found to be more accurate. 

However, no statistically significant difference was observed between both types of printers (Fig. 2 and 

3). Based on absolute mean values, MJ and SLS technology showed the highest accuracy, followed by 
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BJ, SLA and DLP, while the FDM technology showed the least accuracy (Fig. 4). Nevertheless, when 

considering the mean values (Fig. 5), FDM showed the highest accuracy, followed by SLS, BJ, MJ and 

SLA, however, a high heterogeneity was detected (I2: 83.4%). Overall, no significant difference was 

observed within the technologies. In relation to the layer resolution, differences were compared within 

two value limits of 0.15 mm and 0.2 mm. The accuracy of models printed with a layer resolution of ≤ 0.15 

mm was found to be more accurate compared to a resolution of ≥0.2 mm (Fig. 6 and 7). However, no 

significant difference existed, and the heterogeneity was also found to be low (I2: 0%). 

 

 
Figure 2. Meta-analysis for deviations expressed as absolute values considering Printer type. 

 

 

                            

Figure 3. Meta-analysis for deviations expressed as mean values considering Printer type. 
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Figure 4. Meta-analysis for deviations expressed as absolute values considering Printing technology. 

 

 

                           

Figure 5. Meta-analysis for deviations expressed as mean values considering Printing technology. 
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Figure 6. Meta-analysis for deviations expressed as absolute values considering Resolution larger than 

0.15 or not. 

 

 

 

Figure 7. Meta-analysis for deviations expressed as absolute values considering Resolution larger than 

0.2 or not. 

 

4. Discussion 
The following systematic review aimed to compare the accuracy of desktop and professional 3D printers 

for printing maxillofacial skeletal models. Based on our findings, the desktop printers offered a clinically 

acceptable accuracy in comparison to the professional ones, where both type of printers showed a 

dimensional error within an acceptable range of 2% variability [19]. In relation to the technology, both MJ 

and SLS revealed a higher accuracy followed by BJ, SLA, DLP and FDM based models. 

The desktop printers could be regarded as an excellent alternative for printing skeletal models. However, 
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one might argue that the acceptable range of accuracy of a model should depend on its area of application 

[43]. For instance, shaping of plates on models might require higher accuracy compared to the model for 

anatomy teaching, surgery simulation or as a medium for communicating with a patient [10]. In this review, 

the majority of printers, whether desktop or professional, offered a clinically acceptable dimensional 

precision which could be utilized for the purpose of preoperative training, surgical guide manufacturing 

and pre-bending osteosynthesis or reconstruction plates. However, for better understanding the influence 

of the accuracy of printed model depending on the area of application, it is important to first standardize 

the methodology of evaluation, as currently no acceptable 2D or 3D methodology exists for defining the 

clinical acceptable range of the accuracy [28]. 

With regards to the printing technology, the MJ-based printers are composed of hundreds of micro jetting 

heads [34] which offered a higher accuracy compared to the FDM technology, where the details of thin 

bone could not be adequately replicated by a large nozzle diameter of 0.5 mm [31]. Additionally, the FDM-

based printers involved in this review were mostly desktop-grade which have a relative longer printing 

time, low resolution, require post-processing for the removal of support structures and the model has a 

tendency to shrink and warp during the cooling process [13, 18, 20, 31], thus harming the surface quality. 

Similarly, the SLA printers require cleaning residual resin and post-curing with ultraviolet light which might 

partially explain the slightly greater error compared with other technologies [29]. In contrast, the SLS and 

BJ- based models were printed without support structures and the finishing process only involved 

sandblasting which might have led to a higher accuracy. Nevertheless, the meta-analysis showed that all 

technologies showed a similar range of error for printing maxillofacial skeletal models irrespective of the 

printer type or technology. 

Another key aspect of the printing process is the layer resolution, which not only influences the printing 

time but also the accuracy [18]. Our results demonstrated that the accuracy offered by a desktop printer 

with a layer resolution of less than 0.2 mm was comparable to that of the professional ones. Additionally, 

a resolution of ≤0.15 mm showed a higher accuracy compared to a resolution larger than 0.15 mm. 

Overall, the geometric accuracy of the printed model is highly dependent on the AM technology, the 

material and layer resolution. At the same instance, further studies need to be performed to investigate 

the magnitude of error arising at the production and post-processing stage. 

Furthermore, the accuracy of models has also been reported to be affected by certain factors during the 

modeling procedure which include data acquisition, computer data processing [44] and model fabrication 

[45]. Although it is difficult to quantify the exact error contributed at each step. However, overall most of 

the included studies showed a dimensional error within a 2% variation, which could be considered as 

clinically acceptable for the production of maxillofacial skeletal models [19]. Additionally, different imaging 
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modalities and characteristics of anatomy used for creating models inevitably caused standardization 

issues. Most of the models in this review were generated from a dry skull, which were directly scanned 

and segmented without soft tissue, whereas the models obtained from patients can generate greater 

errors due to the obstruction from soft tissue and patient movement [31]. The variability due to slice 

thickness, voxel size, pitch, tube current and voltage and artifacts have been considered as the main 

cause of error when printing patient-specific models [46].The majority of included studies relied on 

computed tomography (CT) scans with a slice thickness less than 1.5 mm to decrease the error for 

capturing regions of thin bone in the orbital floor or walls of the maxillary sinus [9]. Additionally, a higher 

resolution was required to obtain detailed information which is prone to a higher risk of patient radiation 

exposure [9]. A possible alternative to overcome the associated risk of the increased dose is to utilize the 

state-of-art CBCT devices offering low-dose high-resolution images with artefact reduction algorithms 

[29]. 

Another factor which might have influenced the accuracy of models was the application of semiautomatic 

thresholding for segmenting the structures. The proficiency of an observer for using computer-aided 

design software can affect the output results [21]. The most optimal method to overcome this error is to 

apply manual thresholding, however this method is also prone to observer variability and is considered 

to be labor-intensive [28]. Thereby, requiring further research to optimize the segmentation process by 

introducing artificial intelligence-based segmentation algorithms [47, 48]. Future studies should 

concentrate on building a patient-specific model to replicate a realistic scenario, keeping in mind the 

limitations associated with the segmentation process. 

This review had certain limitations. Firstly, the included studies utilized different imaging devices and 

scanning parameters for the purpose of virtual modeling without considering the error induced at the 

imaging chain, which could have led to variability within the findings. Secondly, most of the studies 

assessed accuracy through different non-standardized 2D landmark-based methodologies, thereby 

further causing bias within the results. Thirdly, the meta-analysis was based on a limited number of studies 

based on 3D comparison, therefore the results should be interpreted with caution. Fourthly, the models 

were fabricated with a variety of 3D printers working under different principles, printing parameters, 

materials and post-processing protocols which also might have resulted in data heterogeneity. The layer 

resolution of the x, y and z axes was different in the included studies, where the z-axis layer resolution of 

the included studies was mostly determined by the manufacturer settings and x-y resolution was fixed or 

manually changed by the operator depending on the printing technique. Other factors such as laser 

diameter of the SLA and SLS- technology based printers, nozzle diameter of FDM and droplet dimensions 

of MJ and BJ-based printers were also variable. The dimensional accuracy could also have been 
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influenced by the build orientation i.e. vertical or horizontal and presence of support structure which the 

studies failed to clarify. Additionally, the curing and post-processing varied amongst different studies, 

depending on the printing process which might have influenced the mean error. Keep these limitations in 

mind, all the aforementioned parameters should be standardized if a definite conclusion needs to be 

drawn. Further research should be conducted to objectively evaluate the amount of error introduced at 

each step of the printing process and which printer parameters should be standardized to optimize the 

skeletal models printing in a clinical setting. 

 

5. Conclusions 
In the present systematic review, the maxillofacial skeletal models generated from desktop printers 

offered comparable accuracy to those acquired with professional printers. At the same instance, the 

geometric accuracy of the model was found to be highly dependent on the printing technology, material 

and layer resolution, irrespective of the printer classification. However, these findings should be 

interpreted with caution as the outcomes were based on a limited number of studies utilizing different 

imaging and printing devices with variable settings. Future studies should be conducted to optimize the 

imaging and printing parameters to assess the amount of error induced at each step of the printing 

process before a printer can be qualified for medical–surgical applications.



Article 1 Systematic review: accuracy of 3D printed models | 44 
 
 

References 
[1] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): 

A review of materials, methods, applications and challenges, Compos. Part B Eng. 143 (2018) 
172–196.  

[2] A Kessler, R Hickel, M Reymus, 3D printing in dentistry-State of the art, Oper Dent. 45 (2020) 30-
40.  

[3] A. Louvrier, P. Marty, A. Barrabé, E. Euvrard, B. Chatelain, E. Weber, C. Meyer, How useful is 3D 
printing in maxillofacial surgery?, J. Stomatol. Oral Maxillofac. Surg. 118 (2017) 206–212.  

[4] O.M. Jacobo, V.E. Giachero, D.K. Hartwig, G.A. Mantrana, Three-dimensional printing modeling: 
application in maxillofacial and hand fractures and resident training, Eur. J. Plast. Surg. 41 (2018) 
137–146.  

[5] M. Azuma, T. Yanagawa, N. Ishibashi-Kanno, F. Uchida, T. Ito, K. Yamagata, S. Hasegawa, K. 
Sasaki, K. Adachi, K. Tabuchi, M. Sekido, H. Bukawa, Mandibular reconstruction using plates 
prebent to fit rapid prototyping 3-dimensional printing models ameliorates contour deformity, Head 
Face Med. 10 (2014) 45.  

[6] D. Hoang, D. Perrault, M. Stevanovic, A. Ghiassi, Today surgical applications of three-dimensional 
printing: A review of the current literature & how to get started, Ann. Transl. Med. 4 (2016).  

[7] E. George, P. Liacouras, F.J. Rybicki, D. Mitsouras, Measuring and establishing the accuracy and 
reproducibility of 3D printed medical models, Radiographics. 37 (2017) 1424–1450.  

[8] N. Martelli, C. Serrano, H. Van Den Brink, J. Pineau, P. Prognon, I. Borget, S. El Batti, Advantages 
and disadvantages of 3-dimensional printing in surgery: A systematic review, Surg. (United States). 
159 (2016) 1485–1500.  

[9] P.S. Chang, T.H. Parker, C.W. Patrick Jr, M.J. Miller, The accuracy of stereolithography in planning 
craniofacial bone replacement., J. Craniofac. Surg. 14 (2003) 164-70.  

[10] M. Meglioli, A. Naveau, G.M. Macaluso, S. Catros, Correction to: 3D printed bone models in oral 
and craniomaxillofacial surgery: a systematic review, 3D Print. Med. 6 (2020) 1–19.  

[11] G. Oberoi, S. Nitsch, M. Edelmayer, K. Janjic, A.S. Müller, H. Agis, 3D printing-Encompassing the 
facets of dentistry, Front. Bioeng. Biotechnol. 6 (2018) 1–13.  

[12] S. Ford, T. Minshall, Invited review article: Where and how 3D printing is used in teaching and 
education, Addit. Manuf. 25 (2019) 131–150.  

[13] C.R. Hatz, B. Msallem, S. Aghlmandi, P. Brantner, F.M. Thieringer, Can an entry-level 3D printer 
create high-quality anatomical models? Accuracy assessment of mandibular models printed by a 
desktop 3D printer and a professional device, Int. J. Oral Maxillofac. Surg. 49 (2020) 143–148.  

[14] G.W. Melenka, J.S. Schofield, M.R. Dawson, J.P. Carey, Evaluation of dimensional accuracy and 
material properties of the MakerBot 3D desktop printer, Rapid Prototyp. J. 21 (2015) 618–627.  

[15] R.H. Awad, S.A. Habash, C.J. Hansen, 3D printing methods, Elsevier Inc., 2018.  
[16] S.E. Mowry, H. Jammal, Ã. Clementino, A. Solares, P. Weinberger, A novel temporal bone 

simulation model using 3D printing techniques, Otol Neurotol. 36 (2015) 1562-5. 
[17] Meghan Coakley, Darrell E. Hurt, 3D printing in the laboratory: Maximize time and funds with 



Article 1 Systematic review: accuracy of 3D printed models | 45 
 
 

customized and Open-Source labware, J Lab Autom.  21 (2016) 489–495.  
[18] T. Kamio, K. Hayashi, T. Onda, T. Takaki, T. Shibahara, T. Yakushiji, T. Shibui, H. Kato, Utilizing a 

low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial 
surgery and dentistry fields, 3D Print. Med. 4 (2018) 1–2.  

[19] J. Asaumi, N. Kawai, Y. Honda, H. Shigehara, T. Wakasa, K. Kishi, Comparison of three-
dimensional computed tomography with rapid prototype models in the management of coronoid 
hyperplasia, Dentomaxillofacial Radiol. 30 (2001) 330–335.  

[20] F. Maschio, M. Pandya, R. Olszewski, Experimental validation of plastic mandible models 
produced by a “low-cost” 3-dimensional fused deposition modeling printer, Med. Sci. Monit. 22 
(2016) 943–957.  

[21] A.T. Legocki, A. Duffy-Peter, A.R. Scott, Benefits and limitations of entry-level 3-dimensional 
printing of maxillofacial skeletal models, JAMA Otolaryngol. - Head Neck Surg. 143 (2017) 389–
394.  

[22] M.A. Rendón-Medina, L. Andrade-Delgado, J.E. Telich-Tarriba, A. Fuente-Del-Campo, C.A. 
Altamirano-Arcos, Dimensional error in rapid prototyping with open source software and low-cost 
3D-printer, Plast. Reconstr. Surg. - Glob. Open. 6 (2018) 1–4.  

[23] A. Liberati, D.G. Altman, J. Tetzlaff, C. Mulrow, P.C. Gøtzsche, J.P.A. Ioannidis, M. Clarke, P.J. 
Devereaux, J. Kleijnen, D. Moher, The PRISMA statement for reporting systematic reviews and 
meta-analyses of studies that evaluate health care interventions: explanation and elaboration, 
2009.  

[24] G. Moreno G, T. Pantoja C, Systematic reviews of studies of diagnostic test accuracy, Rev. Med. 
Chil. 137 (2009) 303–307. 

[25] D.J. Thomas, M.A.B.M. Azmi, Z. Tehrani, 3D additive manufacture of oral and maxillofacial surgical 
models for preoperative planning, Int. J. Adv. Manuf. Technol. 71 (2014) 1643–1651.  

[26] G. Sander, H. Kärcher, A. Gaggl, R. Kern, Stereolithography versus milled Three-Dimensional 
models: Comparison of production method, indication, and accuracy, Comput. Aided Surg. 3 (1998) 
248–256.  

[27] J. Kottner, L. Audige, S. Brorson, A. Donner, B.J. Gajewski, A. Hróbjartsson, C. Roberts, M. 
Shoukri, D.L. Streiner, Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were 
proposed, Int. J. Nurs. Stud. 48 (2011) 661–671.  

[28] S. Shujaat, E. Shaheen, F. Novillo, C. Politis, R. Jacobs, Accuracy of cone beam computed 
tomography–derived casts: A comparative study, J. Prosthet. Dent. (2020) 1–8.  

[29] B. Msallem, N. Sharma, S. Cao, F.S. Halbeisen, H.-F. Zeilhofer, F.M. Thieringer, Evaluation of the 
dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and 
BJ printing technology, J. Clin. Med. 9 (2020) 817.  

[30] I. E-Katatny, S.H. Masood, Y.S. Morsi, Evaluation and validation of the shape accuracy of FDM 
fabricated medical models, Adv. Mater. Res. 83–86 (2010) 275–280.  

[31] C. Petropolis, D. Kozan, L. Sigurdson, Accuracy of medical models made by consumer-grade 
fused deposition modelling printers, Can. J. Plast. Surg. 23 (2015) 91–94.  



Article 1 Systematic review: accuracy of 3D printed models | 46 
 
 

[32] R. Olszewski, P. Szymor, M. Kozakiewicz, Accuracy of three-dimensional, paper-based models 
generated using a low-cost, three-dimensional printer, J. Cranio-Maxillofacial Surg. 42 (2014) 
1847–1852.  

[33] I. El-Katatny, S.H. Masood, Y.S. Morsi, Error analysis of FDM fabricated medical replicas, Rapid 
Prototyp. J. 16 (2010) 36–43.  

[34] D. Ibrahim, T.L. Broilo, C. Heitz, M.G. de Oliveira, H.W. de Oliveira, S.M.W. Nobre, J.H.G. dos 
Santos Filho, D.N. Silva, Dimensional error of selective laser sintering, three-dimensional printing 
and PolyJetTM models in the reproduction of mandibular anatomy, J. Cranio-Maxillofacial Surg. 37 
(2009) 167–173. 

[35] D.N. Silva, M. Gerhardt de Oliveira, E. Meurer, M.I. Meurer, J.V. Lopes da Silva, A. Santa-Bárbara, 
Dimensional error in selective laser sintering and 3D-printing of models for craniomaxillary 
anatomy reconstruction, J. Cranio-Maxillofacial Surg. 36 (2008) 443–449.  

[36] A. Nizam, R.N. Gopal, L. Naing, A. B. Hakim, A. R. Samsudin, Dimensional accuracy of the skull 
models produced by Rapid Prototyping technology using Stereolithography apparatus, Arch. 
Orofac. Sci. 1 (2006) 60–66. 

[37] J.Y. Choi, J.H. Choi, N.K. Kim, Y. Kim, J.K. Lee, M.K. Kim, J.H. Lee, M.J. Kim, Analysis of errors 
in medical rapid prototyping models, Int. J. Oral Maxillofac. Surg. 31 (2002) 23–32.  

[38] J.F. Bouyssié, S. Bouyssié, P. Sharrock, D. Duran, Stereolithographic models derived from X-ray 
computed tomography Reproduction accuracy, Surg. Radiol. Anat. 19 (1997) 193–199.  

[39] E. Berry, J.M. Brown, M. Connell, C.M. Craven, N.D. Efford, A. Radjenovic, M.A. Smith, Preliminary 
experience with medical applications of rapid prototyping by selective laser sintering, Med. Eng. 
Phys. 19 (1997) 90–96.  

[40] J. Kragskov, S. Sindet-Pedersen, C. Gyldensted, K.L. Jensen, A comparison of three-dimensional 
computed tomography scans and stereolithographic models for evaluation of craniofacial 
anomalies, J. Oral Maxillofac. Surg. 54 (1996) 402–411.  

[41] T.M. Barker, W.J.S. Earwaker, D.A. Lisle, Accuracy of stereolithographic models of human 
anatomy, Australas. Radiol. 38 (1994) 106–111.  

[42] P. Galanis, Systematic review and meta-analysis, Arch. Hell. Med. 26 (2009) 826–841.  
[43] R. Olszewski, Three-dimensional rapid prototyping models in cranio-maxillofacial surgery: 

systematic review and new clinical applications, 2013.  
[44] E. Huotilainen, R. Jaanimets, J. Valášek, P. Marcián, M. Salmi, J. Tuomi, A. Mäkitie, J. Wolff, 

Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL 
conversion process, J. Cranio-Maxillofacial Surg. 42 (2014) 259–265.  

[45] J.M. Pinto, C. Arrieta, M.E. Andia, S. Uribe, J. Ramos-Grez, A. Vargas, P. Irarrazaval, C. Tejos, 
Sensitivity analysis of geometric errors in additive manufacturing medical models, Med. Eng. Phys. 
37 (2015) 328–334.  

[46] J. Winder, R. Bibb, Medical rapid prototyping technologies: State of the art and current limitations 
for application in oral and maxillofacial surgery, J. Oral Maxillofac. Surg. 63 (2005) 1006–1015.  

[47] Z. Kong, T. Li, J. Luo, S. Xu, Automatic tissue image segmentation based on image processing 



Article 1 Systematic review: accuracy of 3D printed models | 47 
 
 

and Deep Learning, J. Healthc. Eng. (2019).  
[48] J. Minnema, M. van Eijnatten, W. Kouw, F. Diblen, A. Mendrik, J. Wolff, CT image segmentation of 

bone for medical additive manufacturing using a convolutional neural network, Comput. Biol. Med. 
103 (2018) 130–139. 



Article 2 Trueness of 3D modeling by different technology-based 3D printers | 48 
 
 

 ARTICLE 2 

 

Trueness of cone-beam computed tomography-

derived skull models fabricated by different 

technology-based three-dimensional printers 
 
 
Wang X. 1,2 
Shujaat S. 1,3  
Shaheen E. 1  
Ferraris E. 4 
Jacobs R. 1,5 
 

1 OMFS-IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven 
& Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium. 
 
2 Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, 
Harbin, China.  
 
3 Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud Bin 
Abdulaziz University for Health Sciences, Saudi Arabia. 
 
4 Department of Mechanical Engineering, KU Leuven Campus De Nayer, Sint-Katelijne-Waver, Belgium. 
 

5 Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden. 
 
 

 
 
 
 
 
 

Accepted in BMC Oral Health. 
 



Article 2 Trueness of 3D modeling by different technology-based 3D printers | 49 
 

Abstract  
 
Background: Three-dimensional (3D) printing is a novel innovation in the field of craniomaxillofacial 

surgery, however, a lack of evidence exists related to the comparison of the trueness of skull models 

fabricated using different technology-based printers belonging to different cost segments. 

Methods:  A study was performed to investigate the trueness of cone-beam computed tomography-

derived skull models fabricated using different technology based on low-, medium-, and high-cost 3D 

printers. Following the segmentation of a patient’s skull, the model was printed by: i) a low-cost fused 

filament fabrication printer; ii) a medium-cost stereolithography printer; and iii) a high-cost material jetting 

printer. The fabricated models were later scanned by industrial computed tomography and superimposed 

onto the original reference virtual model by applying surface-based registration. A part comparison color-

coded analysis was conducted for assessing the difference between the reference and scanned models. 

A one-way analysis of variance (ANOVA) with Bonferroni correction was applied for statistical analysis.  

Results: The model printed with the low-cost fused filament fabrication printer showed the highest mean 

absolute error (1.33±0.24 mm), whereas both medium-cost stereolithography-based and the high-cost 

material jetting models had an overall similar dimensional error of 0.07±0.03 mm and 0.07±0.01 mm, 

respectively. Overall, the models printed with medium- and high-cost printers showed a significantly 

(p<0.01) lower error compared to the low-cost printer.  

Conclusions: Both stereolithography and material jetting based printers, belonging to the medium- and 

high-cost market segment, were able to replicate the skeletal anatomy with optimal trueness, which might 

be suitable for patient-specific treatment planning tasks in craniomaxillofacial surgery. In contrast, the 

low-cost fused filament fabrication printer could serve as a cost-effective alternative for anatomical 

education, and/or patient communication.  

 

 

Keywords: Printing, three-dimensional; Computer-aided design; Dimensional measurement accuracy; 

Tomography; Skull 
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1. Introduction 
Recent advancements in additive manufacturing (AM), also known as three-dimensional (3D) printing 

and rapid prototyping (RP), have led to an ever-increasing impact on the field of craniomaxillofacial 

surgery [1]. The manufacturing of anatomically true skull models from cone-beam computed tomography 

(CBCT) and computed tomography (CT) data have been successfully used for improving diagnostic 

accuracy, treatment planning and simulation of complex surgical procedures, training, and anatomical 

education [2]. By offering further spatial details on a patient's anatomy and pathology, these models act 

as a surgical aid, increasing the accuracy of the procedure and leading to more predictable post-operative 

results with reduced risk of complications [3]. The main clinical applications of patient-specific 3D printed 

skull models include pre-bending reconstruction plates, prosthesis engineering, and fabrication of 

personalized surgical guides and titanium-based implants for craniomaxillofacial defects [4]. Additionally, 

3D printed models also serve as a supplementary tool to improve the informed consent process and offer 

an effective way of communication with the patients. From an educational perspective, compared to the 

intangible virtual models and ethically challenged cadaveric skull models, 3D printed skull models are a 

key for laying a solid foundation for novices to learn the maxillofacial surgical procedures and anatomical 

learning [5, 6]. 

Currently, a wide variety of 3D printers exist in the market for printing maxillofacial skeletal models. These 

printers can be further classified as low-cost desktop/consumer grade and high-cost professional 3D 

printers [7]. Fused filament fabrication machines are among the most widely adopted low-cost/consumer 

grade desktop 3D printers [8]. They are mostly priced between $1500–$7000, having a build size of less 

than 	10 × 10 × 10inches, layer thickness between 100-300 µm, 0.5% dimensional tolerance normally 

based on calibration cube as a benchmark, slow printing process and utilize thermoplastic filaments as 

the main printing material, such as polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). In 

contrast, the majority of higher cost professional 3D printers are either selective laser sintering (SLS), 

selective laser melting (SLM), or UV (ultraviolet) jet-based technologies (e.g. multi jetting) for printing 

metals and high-performance polymers in addition to the aforementioned materials. They are priced 

between $20,000-$200,000 with a build size bigger than 12 × 12 × 12 inches, layer thickness down to a 

few tens of microns, dimensional tolerance of 0.15% based on calibration cube, and the ability of fast and 

batch printing [9, 10, 11].  

For preoperative planning and clinical training, craniomaxillofacial 3D models are typically manufactured 

via in-house or by commercial external printing service centers utilizing high-cost professional-grade 3D 

printers. The expertise of operators, cost and delivery time of the models might influence the patient’s 

treatment process, consequently, limiting their general applicability [12, 13]. In order to propel the 
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application of 3D printers and increase their generalizability, it is essential to assess whether desktop 

printers can produce skull models with comparable trueness to high-cost printers. Previous studies have 

demonstrated that low-cost printers offer comparable trueness to that of professional ones when printing 

specific anatomical structures, such as the mandible and orbital region [7, 14, 15]. However, there is 

insufficient evidence to assess the trueness or precision of a 3D printed complete skull model consisting 

of craniomaxillary complex and mandible.  In addition, only a few studies have utilized a 3D assessment 

method [7, 16]. Most studies have been dependent on landmark-based methodologies that are prone to 

human error and variability [17, 18]. There is a lack of evidence comparing the trueness of skull models 

fabricated using printers from different cost segments. Therefore, the aim of this study was to investigate 

the trueness of CBCT-derived skull models fabricated using different technology based on low-, medium-, 

and high-cost 3D printers. 

 

2. Methods and materials 
This study followed the World Medical Association Declaration of Helsinki on medical research. The 

study's retrospective collection and use of patient imaging data was approved by the Ethical Review 

Board of the University Hospitals Leuven in Leuven, Belgium (reference number: S64493). 

 

2.1 Data acquisition 
A 32-year-old female patient’s CBCT image consisting of a normal complete skull (craniomaxillary 

complex and mandible) without any pathological condition or artefacts was retrospectively obtained from 

the Dentomaxillofacial Radiology Center (University Hospitals of Leuven, Leuven, Belgium). The 

scanning was performed using NewTom VGI evo (Verona, Italy) at 110 kV tube voltage, 0.3 mm slice 

thickness and 24×19 cm field of view. The image was stored in a Digital Imaging and Communications in 

Medicine (DICOM) format. 

 

2.2 Model design 
The DICOM images were imported into Mimics 22.0 (Materialise, Leuven, Belgium), where thresholding-

based semi-automatic segmentation of the skeletal structures was performed (Fig. 1a, 1b, 1c). Manual 

delineation of the bony contours was carried out to improve either the quality of overall segmentation or 

in situations where thresholding was not enough to sufficiently segment the regions with thin structures, 

such as sinuses, nasal region and margins of foramina. It involved manual addition or removal of the 

bone mask using eclipse and the livewire function of the software. The operator scrolled through all the 

slices in coronal, axial, and sagittal planes to confirm that the region of interest was completely masked 
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without any over- or under-estimation of the margins. The segmented skull was converted to standard 

tessellation language (STL) format and imported into 3-Matic 14.0 (Materialise, Leuven, Belgium), where 

the craniomaxillary part of the skull was split at the mid-sagittal plane into two halves (Fig. 1d). The 

splitting was performed to allow for surface inspection of the interior parts of the skull at a later step. 

Additionally, snap hooks and grooves were designed to attach and detach the two segments. The final 

STL data for the purpose of printing consisted of left skull, right skull and mandible (Fig. 1e). 

 

 

Figure 1. Workflow of 3D printing. (a) Segmentation of the CBCT-derived skull in sagittal view. (b) 

Segmentation of the CBCT-derived skull in axial view. (c) Segmentation of the CBCT-derived skull in 

coronal view. (d) STL of designed 3 anatomical parts: a mandible and 2 hemimaxillofacial complexes. (e) 

Model fabrication. (f) A photo of 3D printed low-cost FFF model by Prusa i3 MK3S. (g) A photo of 3D 

printed medium-cost SLA model by ShapeSolid A600. (h) A photo of 3D printed high-cost MJ model by 

Objet 350. 

 

2.3 3D printing 
Three different printing technologies and printers were utilized for the fabrication of the model: a low-cost 

Prusa i3 MK3S printer (Prusa research, Prague, Czech Republic; Fused Filament Fabrication, FFF 

technology) (Fig. 1f), a medium-cost ShapeSolid A600 printer (Lexcent, Shenzhen, China; 
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Stereolithography, SLA technology) (Fig. 1g), and a high-cost Objet 350 printer (Stratasys, Eden Prairie, 

MN, USA; Material Jetting, MJ technology) (Fig. 1h). Table 1 describes the specifications of the printers 

and materials. The selection of material and settings were based on each company’s recommendations 

for printing anatomical skeletal models.  

 

Table 1. Model specifications of the high, medium and low-cost printers. 
Printer type Printer name, 

manufacturer 
Printing 
technique 

Material Post-processing 

High-cost 
printer 

Objet Connex   350 
(Stratasys, Eden 
Prairie, MN, USA) 

MJ VeroWhite Pressured waterjet  

Medium-cost 
printer 

ShapeSolid A600 
(Lexcent, 
Shenzhen,China) 

SLA DSM123 resin Support removal, 
sanding, rinsing, 
sand-blasted  

Low-cost 
printer 

Prusa i3 MK3S (Prusa 
research, Prague, 
Czech Republic) 

FFF Prusament PLA 
Vanilla White 

Support removal 

 

Figure 2 shows the printing parameters and cost of the low, medium and high-cost printers. Each printer 

was used to fabricate one model (n=3). Since the model printing had been outsourced, the model printing 

and post-processing procedures were conducted by experienced 3D printing technicians. 

 
Figure 2. Printing parameters and cost of the low, medium and high-cost printers. 
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2.4 3D scanning and model comparison 
The fabricated models were scanned with an industrial CT (Zeiss Metrotom 6 Scout system, Zeiss, US) 

at 140 kV, 50 W, 350	ms exposure time per picture, 3008 pictures in  360° and 80 µm original voxel size. 

STL files were calculated in GOM Volume Inspect (GOM Inspect, Braunschweig, Germany). Later, both 

the original (reference) and scanned STLs were imported into 3-Matic 14.0 (Materialise). The scanned 

STLs of the printed models were superimposed onto the original STL by applying surface-based 

registration. The registration was semi-automated in nature where the operator first added corresponding 

reference points onto the reference and scanned models for achieving a close alignment of the matched 

data in a similar 3D space. Following point-based registration, a global co-registration function with 

enough iterations was applied which automatically fine-tuned the registration with maximal conformance 

till best fit of both models was achieved without the presence of any visible spatial changes. A part 

comparison color-coded distance analysis was conducted for assessing the overall 3D differences or 

discrepancies between the surfaces of reference and scanned STLs of the printed models. 

 

2.5 Statistical analysis 
Mean error, mean absolute error (MAE) and root mean square (RMS) values were calculated, where the 

mean error refers to the positive or negative deviation error, while the MAE refers to the overall magnitude 

of the error as shown in the Equation (1).  

789 =
1
;
<|>! − >|
"

!#$
(1) 

The volumetric error between reference and printed models was calculated using relative volumetric 

difference (RVD) as shown in the Equation (2). It allows to compare the magnitude of volumetric 

difference regardless of the absolute values. 

RVD =
|Volume$ − Volume%|

(Volume$ + Volume%) ÷ 2
× 100% (J) 

Data were analyzed using IBM SPSS Statistics for Windows, version 21.0 (IBM Corp., Armonk, NY, USA). 

The Shapiro-Wilk test was used to investigate assumptions of normality. A one-way analysis of variance 

(ANOVA) with Bonferroni correction was applied for multiple comparisons between different printers and 

p value of < 0.05 was considered statistically significant.  

 

3. Results 
The printing process of all printers went smoothly without any issues. However, qualitative observation of 
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the models following post-processing stage revealed that the low-cost FFF model exhibited noticeable 

rough patches at the right temporal region and left skull base. Apart from that, no other flaws were 

detected with the other models.  

Taking into account the RMS values, the high-cost MJ, medium-cost SLA and low-cost FFF models 

observed an average discrepancy of 0.13 ± 0.04 mm, 0.10 ± 0.04 mm, and 1.69 ± 0.31 mm, respectively 

(Table 2), where low-cost FFF model showed significantly higher discrepancy compared to both high-

cost MJ- and medium-cost SLA-based models (p=<0.001). Considering the overall mean absolute error, 

the low-cost FFF model showed the highest discrepancy (1.33 ± 0.24 mm), whereas both the high-cost 

MJ- and medium-cost SLA-based models had an overall similar dimensional error of 0.07 ± 0.01 mm and 

0.07 ± 0.03 mm, respectively (Fig. 3a, 3b, 3c).  

 

Table 2. Summary of mean absolute error (mm) for each printed model; mean ± standard deviation 

values. 
3D printed model Anatomy MAE RMS 
High-cost MJ model  Left skull 0.08 ± 0.14 0.16 

Right skull 0.07 ± 0.12 0.14 
Mandible 0.07 ± 0.06 0.09 
Overall 0.07 ± 0.01 0.13 ± 0.04 

Medium-cost SLA model  Left skull 0.08 ± 0.08 0.11 
Right skull 0.09 ± 0.09 0.13 
Mandible 0.04 ± 0.04 0.06 
Overall 0.07 ± 0.03 0.10 ± 0.04 

Low-cost FFF model 
  

Left skull 1.17 ± 0.95 1.51 
Right skull 1.22 ± 0.91 1.52 
Mandible 1.60 ± 1.29 2.06 
Overall 1.33 ± 0.24 1.69 ± 0.31 
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 (a) 

  (b) 

  (c) 

Figure 3. Part comparison analysis of color mapping between the reference and scanned STLs of the 

models printed with high-, medium-, and low-cost 3D printers. (a) High-cost MJ model by Objet 350. (b) 

Medium-cost SLA model by ShapeSolid A600. (c) Low-cost FFF model by Prusa i3 MK3S. From left to 

right: front view of skull; left view of skull; right view of skull; upper view of craniomaxillary complex; bottom 
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view of craniomaxillary complex; side view of mandible; internal side of left skull; external side of left skull; 

external side of right skull; internal side of right skull. 

 

Based on the mean error, the FFF model had the highest overall surface error of −1.23 ± 0.32 mm (Table 

3). The medium-cost SLA model provided a more precise replica (0.03 ± 0.01 mm), however, slight 

expansion was observed at the superior margin of the skull. The high-cost MJ model demonstrated the 

lowest mean error (−0.00 ± 0.03 mm). Overall, the models printed with medium- and high-cost printers 

showed a significantly (N < 0.01)  lower error compared to the low-cost printer, while there were no 

additional significant geometrical differences found. According to the RVD of printed anatomical 

structures (Table 4), the high-cost MJ and medium-cost SLA models had relatively low RVD values, 

ranging from 0.88% to 9.51%. In contrast, the low-cost FFF printer had significantly higher RVD values, 

ranging from 49.86% to 77.45% across all three anatomical structures. Overall, both MJ and SLA model 

showed significantly lower RVD compared to low-cost FFF models (p<0.001). In relation to anatomical 

structures, both MJ and SLA models exhibited a lower RVD for mandible compared to the craniomaxillary 

complex.  

On the other hand, as from Figure 2, the FFF model costed a fraction of the others (about 5% and 25% 

as compared to the MJ and SLA 3D printed models, respectively), but required approximately 5 times 

longer to print.  

 

Table 3.  Summary of mean error (mm) for each printer; mean ± standard deviation values. 
3D printed model Anatomy Mean RMS 
High-cost MJ model  Left skull 0.01 ± 0.16 0.16 

Right skull 0.01 ± 0.14 0.14 
Mandible −0.03 ± 0.08 0.09 
Overall −0.00 ± 0.03 0.13 ± 0.04 

Medium-cost SLA model  Left skull 0.02 ± 0.11 0.11 
Right skull 0.03 ± 0.12 0.13 
Mandible 0.03 ± 0.05 0.06 
Overall 0.02 ± 0.01 0.10 ± 0.04 

Low-cost FFF model 
  
  

Left skull −1.10 ± 1.00 1.50 
Right skull −1.00 ± 1.10 1.50 
Mandible −1.60 ± 1.30 2.10 
Overall −1.23 ± 0.32 1.70 ± 0.31 
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Table 4.  Summary of relative volume difference (%) for each printer. 
3D printed model Anatomy RVD 
High-cost MJ model  Left skull 6.19% 

Right skull 9.04% 
Mandible 0.93% 

Medium-cost SLA model  Left skull 6.32% 
Right skull 9.51% 
Mandible 0.88% 

Low-cost FFF model Left skull 61.73% 
Right skull 49.86% 
Mandible 77.45% 

 

4. Discussion 
In the era of personalized precision medicine, patient-specific 3D printed skeletal models derived from 

medical imaging datasets have become a standard tool [19]. An anatomically true skull is a fundamental 

requirement in the treatment planning workflow for complex craniomaxillofacial surgical cases and 

modern medical education [5]. Recent advances in the 3D printing industry have drastically lowered the 

price tag of the printers, however, few studies have been performed to assess whether consumer grade 

3D printing technologies, such as FFF can offer a precise and true alternative to the higher-cost and 

professional solutions. As a result, 3D printers can be integrated into the workflows of majority of the 

hospitals with financial constraints. In this work, the trueness of printed skull models using a low-, a 

medium-, and a high-cost 3D printer was evaluated. 

Due to the multi-dimensionality and complex nature of a human skull, its accurate anatomical 

representation is vital in all areas of craniomaxillofacial surgery [14]. The trueness of a 3D printed model 

is greatly dependent on the image acquisition and assessment technique [20, 21]. Since the trueness of 

3D printing may be affected by the variety of imaging modalities and parameters related to slice thickness 

and voxel size [10], the current work employed CBCT data with a slice thickness of 0.3 mm. It would be 

intriguing to investigate the result of acquiring data from a pathological skull generated by a conventional 

CT with various scanning parameters. Traditional evaluation methods include landmark-based linear 

and/or angular measurements using calipers or virtual models of the printed models scanned with 

CT/CBCT acquisition devices [10]. In the present study, an industrial CT scanner was used to generate 

the surface of the printed skulls and after surface registration, part comparison analysis was employed to 

compare the printed skulls to the reference model. The industrial CT scanners have been known to offer 

higher accuracy for inspection of complex and internal features produced by additive manufacturing 

compared to CT/CBCT devices [22]. Furthermore, compared to traditional landmark-based methods, 
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which are prone to human error and variability depending on the observer, the semi-automatic trueness 

assessment methodology applied in the present work is more reliable [23]. 

A previous study showed that a dimensional linear error within the range of 2% variability could be 

considered as clinically acceptable for the production of maxillofacial skeletal models [24]. Similarly, no 

studies were found assessing the clinically acceptable range of error based on 3D methodologies. It 

should be kept in mind that the trueness of a model is dependent on the task at hand, where higher 

trueness is mandatory in cases where pre-bending of reconstructive plates, surgical guide manufacturing 

and implant fabrication are required. Evidence suggests that trueness value of a model is also a 

prerequisite for reducing the time of operation, the duration of bleeding, and the postoperative morbidities 

of the patient [20]. In contrast, a slight room for compromise exists if a 3D model is printed for educational 

purposes where trueness is not a crucial requirement as that for surgical simulation or clinical scenario 

replication [14].  

According to the findings of the current study, SLA and MJ offer a medium- and high-cost solution with a 

comparable mean absolute error of less than 0.1 mm, respectively, which could be considered as clinically 

acceptable for tasks involving treatment planning in craniomaxillofacial surgery. The low-cost FFF model 

showed an overall discrepancy of greater than 1 mm that might affect how pre-bent plates, surgical guides 

and implants fit. Furthermore, the longer printing time, up to 5 times longer than the medium- and high-

cost printer, could further influence its efficiency in a 3D workflow, thereby, confirming its inapplicability 

for clinical applications. Nonetheless, it provides a practical and cost-effective solution for simulating 

procedures and anatomical education, as the printer was able to replicate the skeletal anatomy. It is also 

noteworthy that complexity of anatomical structures being printed should also be taken into consideration, 

as the craniomaxillary complex showed more deviation than mandible. 

The low-cost FFF printer utilized in the present study showed a higher amount of discrepancy compared 

to other studies, whereas both consumer-grade and professional printers showed comparable trueness 

for printing skeletal models [7, 8, 16, 25]. The trueness of an FFF based model has been known to be 

mostly affected by the layer thickness and nozzle diameter. In this study, a nozzle size of 0.4 mm was 

used with a layer thickness of 0.15 mm. The printing strategy, infill density and print orientation, along with 

the manufacturing parameters (extrusion temperature and bed temperature) might also play a role 

towards the model’s trueness [26]. The infill density applied in the present study was 15%, which was 

similar to the range of 10% to 50% reported in the previous studies [7, 12, 15, 16]. The manufacturing 

settings of 0.15 mm layer resolution, 200°C extruder temperature and bed heat of 60°C, were in 

accordance with the settings proposed by Rendón-Medina et al [17]. Even with the optimized settings, 

an increased error was observed specifically at the temporal region and skull base of the right and left 
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skull respectively, which could have been due to the build orientation. Another source of error could have 

been induced by the removal of support structures at the post-processing step. In this context, it is also 

relevant to know that the use of high-end/professional FFF industrial 3D printers, featuring high 

throughput nozzle, temperature controlled closed chamber and/or higher axes resolution, could have 

facilitated the productions of more true models, albeit at higher cost with a longer print time [20]. Moreover, 

the impact of build orientation on the trueness of the models was not investigated, which should be 

considered in future studies. 

The trueness of the SLA model was in accordance with other studies, where SLA was found to be optimal 

for fabricating skeletal structures with intricate details, given its superior resolution, ultimately related to 

the laser positional accuracy [27]. Likewise, MJ was able to optimally print the complex anatomical 

structures with a finest layer resolution and provided a better surface quality, which was also consistent 

with previous studies [27]. 

The study had certain limitations. Firstly, the study was limited to a small sample of three printers with 

different technologies and materials which cannot be generalized to all the printers. Secondly, the 

selection of material could have also influenced the trueness, which also needs to be investigated in 

further studies. Hence, it is important to investigate the impact of different materials and additive 

components on material conversion and properties [26]. Thirdly, since just one normal skull was examined 

in this work, further research is required to determine how it relates to the pathological skull. Fourthly, 

owing to the small sample size and only trueness being evaluated, the findings of the study should be 

interpreted with caution. Future studies are recommended to assess the model’s accuracy with a larger 

sample size.  Fifthly, the cost-effectiveness in this study was only based on the printer and the model 

price, thereby, further studies are also recommended to perform a detailed cost-analysis to include the 

costs related to electricity, maintenance, labor and license acquisition/renewal. Lastly, haptic feedback of 

the models for simulating surgical procedures was not assessed. In this respect, although the FFF and 

SLA material pallet is continuously enlarging, MJ technology is still the most viable option offering the 

largest range of materials for simulating soft and hard tissue. 

 

5. Conclusions 
Both stereolithography and multi-jetting were able to replicate the skeletal anatomy on a medium- and 

high-cost printer, respectively, with the least amount of error, thereby confirming their applicability for 

clinical application, such as pre-bending plates and fabricating implants. Desktop/consumer grade FFF 

printer offered the highest discrepancy which might not be optimal for clinical applications, however, it 

could serve as a cost-effective alternative for surgical simulation, anatomical education, and/or patient 
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communication.  
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Abstract 
 
Statement of problem: A model offering anatomic replication and haptic feedback similar to that of real 

bone is essential for hands-on surgical dental implant training. Patient-specific skeletal models can be 

produced with 3-dimensional (3D) printing, but whether these models can offer optimal haptic feedback 

for simulating implant surgery is unknown. 

Purpose: The purpose of this trial was to compare the haptic feedback of different 3D-printed models for 

simulating dental implant surgery. 

Material and methods: A cone beam computed tomography image of a 60-year-old man with a partially 

edentulous mandible was manipulated to segment the mandible and isolated from the rest of the scan. 

Three-dimensional models were printed with 6 different printers and materials: material jetting-based 

printer (MJ, acrylic-based resin); digital light processing-based printer (DLP, acrylic-based resin); fused 

filament fabrication-based printer (FFF1, polycarbonate filament; FFF2, polylactic acid filament); 

stereolithography-based printer (SLA, acrylic-based resin); and selective laser sintering-based printer 

(SLS, polyamide filament). Five experienced maxillofacial surgeons performed a simulated implant 

surgery on the models. A 5-point Likert scale questionnaire was established to assess the haptic feedback. 

The Friedman test and cumulative logit models were applied to evaluate differences among the models 

(α=.05). 

Results: The median score for drilling perception and implant insertion was highest for the MJ-based 

model and lowest for the SLS-based model. In relation to the drill chips, a median score of ≥3 was 

observed for all models. The score for corticotrabecular transition was highest for the MJ-based model 

and lowest for the FFF2-based model. Overall, the MJ-based model offered the highest score compared 

with the other models. 

Conclusions: The 3D-printed model with MJ technology and acrylic-based resin provided the best haptic 

feedback for performing implant surgery. However, none of the models were able to completely replicate 

the haptic perception of real bone. 

Clinical Implications: Three-dimensional printed models could serve as an effective clinical training tool 

for simulating dental implant surgery. Improvements to obtaining haptic feedback from these models are 

still required to accurately match surgery in real bone. 

 

Keywords: Printing, three-dimensional; Computer-aided design; Dimensional measurement accuracy; 

Tomography 
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1. Introduction 
Hands-on dental implant surgery training programs have been incorporated into predoctoral and 

postdoctoral curricula to provide students with anatomic and haptic understanding before encountering 

actual patients [1]. In addition, the demand for surgical training among general dentists has increased 

with the growing popularity of implant-supported prostheses and technological advancements, where 

previously implant surgery was only provided by specialists [1]. Preclinical implant surgery training 

increases the trainee’s confidence and competency, increasing the survival rate and lowering the 

complication rate of implant placements [2]. 

For optimal training, the model used should offer both anatomic replication and haptic feedback similar 

to those of real bone. Current training models for implant placement include cadaveric or animal bone, 

polymeric models, and virtual reality-based haptic simulators [3, 4], each with limitations. Cadaveric bone 

has been considered the prime choice for enhancing preclinical dental implant surgical skills, but its use 

is limited because of reasons ranging from ethical issues to its limited availability because of high cost 

and demand. Furthermore, the use of cadaveric bone has been a subject of controversy for training 

novice practitioners [5]. Bovine or porcine bone models offer haptic feedback comparable with that of real 

bone, but the human anatomy is not represented [2, 6]. Various polymeric models made of polyurethane 

or synthetic foams have been incorporated into implant training programs, but they do not replicate 

patient-specific anatomy and the haptic feedback does not match that of real bone [6, 7]. Currently 

available virtual reality haptic simulators are inadequate for reproducing a realistic dental drilling force 

and are not sufficiently robust to be widely applied for implant training [4, 8, 9]. 

Three-dimensional (3D) printing has allowed the production of visuo-haptic patient-specific models to be 

used for both medical education and craniomaxillofacial surgical training [10, 11, 12, 13, 14]. The 

application of 3D-printed patient-specific models for rehearsing complex maxillofacial procedures has 

been reported to reduce operation and bleeding time and to improve clinical outcomes [15, 16]. In addition, 

3D-printed models can enhance a clinician’s comprehension of anatomic structures, thereby improving 

treatment delivery and patient care [17]. Various fields of craniomaxillofacial surgery have successfully 

used 3D models that offer visuohaptic feedback similar to that of real bone for clinical training. However, 

evidence as to whether these models can offer optimal haptic feedback for dental implant surgery is 

lacking. Furthermore, printing technologies and materials have been reported to affect the mechanical 

properties of a 3D-printed model [18, 19, 20, 21, 22]. Therefore, this study compared the haptic feedback 

of different technology- and material-based 3D-printed models to assess whether these models can offer 

realistic haptic feedback for dental implant placement. The null hypothesis was that the haptic feedback 

of different models would be similar. 
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2. Methods and materials 

This research was performed in compliance with the World Medical Association Declaration of Helsinki 

on medical research and the principles of Good Clinical Practice. The study was approved by the Ethics 

Committee Research UZ/KU Leuven (reference number: S64493; registration number: 

B3222020000240). This study complied with the Standards for Reporting Qualitative Research (SRQR) 

guidelines. A cone beam computed tomography (CBCT) scan of a 60-year-old male patient was recruited 

from the database of the Dentomaxillofacial Radiology Center (University Hospitals Leuven, Leuven, 

Belgium). The scan was acquired with a CBCT device (Newtom VGi-evo; QR Srl), and the scanning 

parameters were 110 kV, 10×10-cm field of view, and voxel size of 0.2 mm. Inclusion criteria involved a 

partially edentulous mandible with at least 5 missing teeth in the posterior region, minimum bone height 

of 10 mm, presence of adequate bone width at the planned implant placement sites, good-quality image 

with normal cortical bone, and dense trabecular architecture. Exclusion criteria were the presence of any 

pathological condition, unhealed extraction sockets, and motion or metal artifacts in the mandibular region. 

The CBCT data were saved in the digital imaging and communications in medicine (DICOM) format and 

then imported into a 3D software program (Mimics 22.0; Materialise) for threshold-based segmentation 

[23]. The mandibular trabecular bone was segmented by generating a mask by using a threshold value 

of 350 Hounsfield units (HU), followed by manual delineation for the correction of the mask boundaries 

in the coronal, axial, and sagittal planes. The teeth and cortical bone masks were manually delineated in 

all planes. Thereafter, all the masks were combined by using Boolean operations and converted to a 

single segmented 3D object consisting of bone and teeth in the standard tessellation language (STL) 

format. Following the 3D model calculation, 3 smoothing iterations with a factor of 1 were applied to obtain 

a smooth 3D model without any overestimation or underestimation of the segmented structures (Fig. 1A). 

Subsequently, the STL file was imported into a 3D modeling software program (3-matic 14.0; Materialise) 

to design a base with a cavity in the middle (Fig. 1B). The designed mandibular model was printed with 

6 different printers (Fig. 2). The specifications of the printers and materials are described in Table 1. The 

printing technologies included SLA, FFF, MJ, SLS, and DLP. The selection of materials was based on 

manufacturer recommendations, and they were those most commonly used for printing skeletal models. 

Following the printing process, all models were stored at room temperature. 
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Figure 1. Workflow for 3D model processing. A, Manual segmentation of mandibular bone including 

cortical bone, trabecular bone, and teeth from patient’s CBCT. B, Base design and model processing. 3D, 

Three-dimensional; CBCT, cone beam computed tomography. 

 

 

Figure 2. Frontal view of 6 printed models. A, Material jetting (MJ, Objet Connex 350 with acrylic-based 

resin). B, Digital light processing (DLP, Nextdent 5100 with acrylic-based resin). C, Fused filament 

fabrication 1 (FFF1, Raise3D E2 with polycarbonate filament). D, FFF2 (Prusa i3 MK3S with polylactic 

acid filament). E, Stereolithography (SLA, Form 2 with acrylic-based resin). F, Selective laser sintering 

(SLS, TPM3D P550DL with polyamide filament). 
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Table 1.  Model specifications 

Printer 
name 

Manufact
urer of 
printer 

Tech
nolo
gy 

Material 
commercia
l name 

Manufact
urer of 
material 

Material 
composition 

Tensil
e 
Streng
th 
(MPa) 

Young’s 
Modulus 
(MPa) 

Laye
r 
resol
ution 
(μm) 

Post-
processing 

Prin
ting 
tim
e 
(h) 

Mod
el 
weig
ht (g) 

Print
er 
price 
(€) 

Mod
el 
pric
e (€) 

Objet 
Connex 
350  

Stratasys  MJ VeroDent 
MED670   

Stratasys Acrylic-based 
resin: 
Proprietary 

50-60 2000-3000 30 Pressured 
water jet  

3.5 99 2000
00 

44 

Nextde
nt 5100 

3D 
systems  

DLP NextDent 
Model 2.0  

3D 
systems 

Acrylic-based 
resin: 
Ethoxylated 
bisphenol A 
dimethacrylate  

NR NR 50 Post-
polymerizati
on 

0.5 100 1200
0 

25 

Raise3
D E2 

Raise3D  FFF PolyMax PC Polymaker  Polycarbonate 59.7 
±1.8 

2048±66 200 Supports 
removed, 
airborne-
particle 
abraded 

15.3 46 2540 6.24 

Prusa i3 
MK3S 

Prusa 
research  

FFF Prusament 
PLA Vanilla 
White  

Prusa 
research  

Polylactic acid 
filament  

57.4 
±0.4 

2200-2400 100 Supports 
removed  

14 67 750 1.84 

Form 2 Formlabs 
Inc. 

SLA Model resin  Formlabs 
Inc. 

Acrylic-based 
resin: Urethane 
Dimethacrylate  
(UDMA) 

33-61 1600-2700 100 Isopropyl 
alcohol bath, 
postpolymeri
zed, 
supports 
removed 

10.2
5 

89 2914 23.6 

TPM3D 
P550DL  

TPM3D SLS Precimid 
1172 Pro 

TPM3D  Polyamide 50 2000 120 Airborne-
particle 
abraded 

3 75 2081
56 

18 
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Five oral and maxillofacial surgeons with a minimum clinical experience of 4 years in implant dentistry 

performed implant surgery on the printed models. All participants had been trained and calibrated 

beforehand. Additionally, they were blinded to the printer’s information, and the models were assigned a 

random number from 1 to 6 generated in a spreadsheet (Excel; Microsoft Corp). The models were fixed 

to a dental phantom head by embedding an M6 hexagonal nut into the cavity prepared at the model’s 

base with cyanoacrylate resin to be attached to the bolt of the phantom head (Fig. 3A) [24]. 

 

 

Figure 3. Three-dimensional model surgery. A, Clinical arrangement. B, Dental implant surgery. 

 

The surgical procedure consisted of drilling freehand, followed by implant and cover screw placement 

(Fig. 3B). The drilling was performed with an implant motor (OsseoSet 100; Nobel Biocare) and a contra-

angle handpiece with irrigation. The motor was set to 800 rpm with a torque control of 45 Ncm. The dental 

implant was a customized experimental device derived from a commercially available dental implant (In-

Hex, 3.8×9 mm; Wego). The drilling order was as follows: 2.2-mm-round drill followed by 1.8-mm pilot, 

2.2-mm pilot, 3.3-mm form drill, and 3.8-mm final drill. The depth of the drilling (9 mm) was guided by the 

markings on the drills. An insertion torque of 45 Ncm, maximum, was applied, and if necessary, a manual 

torque wrench was used (Wego). A total of 30 implants were placed in the posterior mandibular region 

(left and right first molar, left and right second molar, right second premolar) by the 5 surgeons, with each 

surgeon placing 1 implant in all the models (6 models×5 insertions=30 implants). 

The surgeons were asked to report the similarity between the model and implant placement in an actual 

patient based on their clinical experience by using a 5-point Likert scale questionnaire (ranging from 

1=strongly disagree to 5=strongly agree). The questionnaire consisted of 4 questions adapted from 

previous studies, and its face validity was approved by 2 independent experts (S.S., R.J.) [11,25, 26, 27]. 

The questions evaluated the 3D model quality based on bone chips and the haptic feedback of drilling, 

corticocancellous transition, and implant insertion (Table 2). The questionnaire was answered after each 
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implant placement and before the drilling of the next model. One surgeon repeated the experiment after 

2 weeks. 

 

Table 2. Questionnaire for evaluating haptic feedback using 5-point Likert scale 

Question 
no. Questionnaire 

Strongly 
disagree Disagree Neutral Agree Strongly 

Agree 
1 2 3 4 5 

1 Were chips of this model 
similar to real bone chips 

          

2 
Was tactile perception and 
resistance while drilling 
equal to that of real bone 

          

3 
Was transition from cortical 
bone layer to trabecular 
bone observed during 
drilling  

          

4 
Was tactile perception and 
resistance of implant 
placement equal to that of 
real bone 

          

 

The data were analyzed by using statistical software programs (IBM SPSS Statistics for Windows, v21.0; 

IBM Corp, and S-Plus 8.0 for Linux). Median and interquartile range were calculated, and the Friedman 

test with the surgeon as a blocking factor was used for rank sum test of each question. A cumulative logit 

model was built with the surgeon as a random factor to assess differences in the proportion of 

observations below specific threshold values. Thresholds were the percentage of evaluations lower than 

or equal to 1, 2, 3, and 4, respectively. Test-retest reliability was computed, and the Cronbach alpha was 

applied to measure the reliability of the groups of questions (α=.05). 

 

3. Results 
All the implants were covered with a screw and achieved primary stability without any failure, irrespective 

of the surgeon or model. The test-retest reliability and Cronbach alpha showed a high correlation (r=0.759) 

and an acceptable reliability (α=.791), respectively [28]. The raw scoring of the questionnaire for each 

model is provided in Supplemental Table 1 (available online). 

Fig. 4 describes the median and interquartile range of the scoring achieved with each printed model. The 

median score for drilling perception and implant insertion was highest for the MJ-based model and lowest 

for the SLS-based model. In relation to the drill chips, a median score of ≥3 was observed for all models. 

The score for corticotrabecular transition was highest for the MJ-based model and lowest for the FFF2-
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based model. The haptic feedback for implant insertion was highest for the MJ-, followed by the DLP-, 

FFF1-, and FFF2-based models, all of which had a median score of ≥3. However, the SLA- and SLS-

based models achieved a score of 2 and were considered not sufficiently realistic for implant insertion. 

When comparing the differences among 3D-printed models based on each question individually, no 

significant differences were observed (P>.05). Overall, the MJ-based model offered the highest score 

compared with other models, whereas the SLS-based model scored the lowest. 

When all questions were combined for each model, the percentage of scores for a certain level was as 

summarized in Fig. 5. The results were expressed as odds ratio (OR). In terms of probability that a score 

would be smaller than or equal to 3 (Table 3), a significant difference was observed for DLP-MJ 

(OR=9.044, P=.045), MJ-FFF2 (OR=0.075, P=.016), and MJ-SLS (OR=0.046, P=.007).  

 

Table 3. Comparison between 3D printed models with cumulative logit models with probability that score 

smaller than or equal to 3 
Model Odds ratio P 

Form 2 (SLA)-Nextdent 5100 (DLP) 0.411 .901 

Form 2 (SLA)-Object Connex 350 (MJ) 3.714 .546 

Form 2 (SLA)-Prusa i3 MK3S (FFF2) 0.280 .716 

Form 2 (SLA)-Raise3D E2 (FFF1) 1.297 .100 

Form 2 (SLA)-TPM3D P550DL (SLS) 0.170 .409 

Nextdent 5100 (DLP)-Object Connex 350 (MJ) 9.044 .045 

Nextdent 5100 (DLP)-Prusa i3 MK3S (FFF2) 0.681 .999 

Nextdent 5100 (DLP)-Raise3D E2 (FFF1) 3.159 .747 

Nextdent 5100 (DLP)-TPM3D P550DL (SLS) 0.414 .960 

Object Connex 350 (MJ)-Prusa i3 MK3S (FFF2) 0.075 .016 

Object Connex 350 (MJ)-Raise3D E2 (FFF1) 0.349 .775 

Object Connex 350 (MJ)-TPM3D P550DL (SLS) 0.046 .007 

Prusa i3 MK3S (FFF2)-Raise3D E2 (FFF1) 4.642 .464 

Prusa i3 MK3S (FFF2)-TPM3D P550DL (SLS) 0.608 .998 

Raise3D E2 (FFF1)-TPM3D P550DL (SLS) 0.131 .210  

Significant difference values in bold. 
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Figure 4. Median and interquartile range of scoring achieved with each printed model. A, Bone chips. B, 

Drilling perception. C, Corticotrabecular transition feedback. D, Implant insertion perception. E, Overall 

haptic feedback considering all questions. Boxes comprise 25th and 75th quartiles and median values, 

upper and lower whisker measure out 1.5 times box length, and circles represent values outside of given 

percentiles. DLP, digital light processing; FFF, fused filament fabrication; MJ, material jetting; SLA, 

stereolithography; SLS, selective laser sintering. 
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Figure 5. Scoring percentage for all questions based on each model. Scores from 1 (strongly disagree) 

to 5 (strongly agree) represented by different color. Horizontal axis stands for total score value of 20 

based on all questions. 

 

4. Discussion 
The results of the present study showed differences among the haptic feedback of different models. 

Therefore, the null hypothesis was rejected. A CBCT scan of the patient was used as a clinical standard 

to print both cortical and trabecular bone instead of relying on high-resolution scans or bone blocks to 

determine whether patient-specific modeling of the hard-tissue structures could offer realistic conditions 

for performing dental implant surgery. Based on the findings, the median score for corticotrabecular 

transition was highest for the MJ-based model and lowest for the FFF2-based model. The low score could 

be because the FFF2 printer was unable to optimally replicate the trabecular architecture, FFF printers 

generate output with low mechanical properties, and the printed model was highly dependent on the 

material, structural parameters, and printer settings [18]. On the contrary, MJ-based printers are generally 

able to replicate the model more precisely with finer layer resolution [10]. 

In relation to drilling perception, the MJ-based model with acrylic-based resin achieved the highest score, 

but none of the models were able to offer resistance comparable with that of real bone. Additionally, SLA 

was identified as being better for drilling than the DLP-based model, possibly because of the 

polymerization process. SLA polymerizes the resin point by point, while DLP polymerizes a layer at a time 

at a faster rate [18]. Therefore, the SLA polymerization process leads to a better quality model and was 

rated higher than the DLP printer [18]. Consequently, the postprocessing might also have negatively 
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influenced the drilling feedback for all models. The internal structures were dense because the support 

material of trabecular bone could not be removed efficiently as the structures in the SLA-, DLP-, MJ-, and 

FFF-based models are fragile. Although no support was required for printing with the SLS-based printer, 

powder was retained within the internal architecture and could not be removed properly without fracturing 

the thin trabecular architecture, thereby further adding to the thickness of the structures. 

Apart from technology, an adequate tactile sensation also depends on the mechanical properties of the 

material, including the Young modulus and hardness, which impact the drilling force [10, 19]. All models 

included in this study had a Young modulus below the 3000-MPa value of mandibular bone [29]. The MJ-

based model with acrylic resin showed the closest modulus to that of real bone, which might have further 

enhanced its capability for achieving a higher haptic feedback than the other models. The SLS-based 

model with polyamide was found to be too hard for drilling cortical bone. The present findings were 

consistent with those of Favier et al [20], who reported that polyamide displayed higher mechanical 

properties than those in real patients. Additionally, Haffner et al [21] and Shujaat et al [26] also reported 

that polyamide offered limited actual bone resistance when performing temporal bone surgery and 

mandibular orthognathic surgery, respectively. Furthermore, the FFF2-based model printed with polylactic 

acid filament was unable to replicate the trabecular architecture optimally, consistent with a previous 

study [26]. 

As for the bone chips, all models achieved a median score of 3. The FFF2-based model with polylactic 

acid tended to melt during drilling even with irrigation because the thermal properties of the material 

generated increased heat. Furthermore, the SLA-based model with urethane dimethacrylate (UDMA) 

resin scored better than other materials [30]. Despite the different mechanical properties of the selected 

materials, the size and shape of chips during drilling for all models were similar to those of fine powder 

apart from polylactic acid. Additionally, because of the susceptibility of photopolymers to heat, all the 

models were stored at room temperature [22]. 

When inserting the dental implants, all models were able to achieve primary stability but with a tactile 

perception lower than that of real bone. The perception of inserting an implant in the SLA-based model 

with acrylic resin was considered soft, as the implant was inserted with the least effort, while the SLS-

based model with PA required higher pressure with manual tightening because of the material’s hardness. 

An essential requirement for a training model is that it has to be of low cost [5]. Based on the present 

findings, 3D-printed models could act as a cost-effective method for teaching clinical anatomy and 

simulating dental implantology procedure. Overall, the MJ-based model with acrylic-based resin best 

replicated the haptic feedback of real bone. However, depending on the availability of printer and material, 

FFF1-, DLP-, and SLA-based models could also act as an alternative for implant surgery simulation. 
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Limitations of the study included that haptic feedback was assessed subjectively and only 5 surgeons 

were included. Future work should focus on quantitatively analyzing the mechanical properties of the 

printing material and the printer’s capability to print real bone-like structures. Second, as only 6 medical 

printers with different parameters were used for comparison, the findings of this study should be 

interpreted with caution and cannot be generalized to other printers, which might offer a better outcome. 

Third, the study lacked a comparison of haptic feedback with real bone; instead, this was assessed based 

on the surgeon’s experience, which could have led to bias. The investigation of haptic feedback for 

implant surgery assessed in this study with different technologies and materials could motivate further 

studies to improve the perception of these models. Future studies should also assess the performance 

of 3D printers for printing and evaluating the surgical haptic feedback of bone structures with different 

densities. 

 

5. Conclusions 
Based on the findings of this trial, the following conclusions were drawn:  

1. The 3D-printed model with MJ technology and acrylic-based resin provided the best haptic feedback 

and could act as a standard for simulating dental implant surgery.  

2. None of the models were able to completely replicate the haptic perception of real bone. 
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Implant placement using a static surgical guide can be categorized as fully or partially guided, where 

partial guidance involves pilot-guided or half-guided surgical guide [1]. A fully-guided approach offers less 

deviation from the planned implant position compared to a partially guided approach [2]. However, pilot-

drill partial guidance is the most commonly used technique in dental practice due to its ease of use, 

reduced irrigation problems, and ability to make minor adjustments to implant position if necessary [3]. In 

order to train novice surgeons, it may be beneficial to evaluate the effectiveness of pilot-guided surgical 

guides. With this method, the surgeon has more control over the implant placement as they manually 

inspect each step after the pilot drilling. Fully-guided surgical guides rely heavily on the guide itself and 

do not require strict monitoring [4]. Half-guided surgical guides involve drilling dictated by the guide, 

followed by freehand implant placement [5]. Therefore, a pilot study was conducted to compare the 

accuracy of implant placement between novice and experienced surgeons using pilot-guided and half-

guided surgical guides. 

Four CBCT-based simulation models of bilateral missing first molars (Fédération Dentaire Internationale 

[FDI]: 36 for lower left 1st molar, 46 for lower right 1st molar) were created using a 3D printer, following 

the same protocol outlined in Article 3. The experienced surgeon had more than five years of experience 

in implant surgery, while the novice surgeon had no prior experience in surgical implantology. The 

experienced surgeon was responsible for the implant planning. Afterwards, the 3D printer (Objet Connex 

350 printer, Stratasys) was used to design and fabricate both pilot-guided and half-guided surgical guides 

and attached surgical sleeves to the guides with glue. 

The surgical procedure for the pilot-guided group followed the manufacturer’s kit protocol (Wego, China). 

The drill order was: 2-mm pilot drill using the surgical guide, followed by freehand drilling with a 3.3-mm 

form drill, and 3.8-mm final drill. For the half-guided group, the drilling procedure involved using the Nobel 

Parallel CC Kit (Nobel Biocare). This involved inserting drill keys into the sleeve inside the surgical guide 

to guide the consecutive drills with different diameters in the planned positions and angulation. A variety 

of keys with increasing diameters (2 mm, 2.8 mm, 3.2 mm, and 3.6 mm) were used to guide each 

individual drill, and markers on all the drills were used to control the drilling depth. After drilling, the 

surgical guide was removed to finalize the implant placement by freehand. All implants (customized 

experimental In-Hex implants, 3.8mm x 9mm, Wego, China) were inserted using a motor unit (OsseoSet, 

Nobel Biocare AB, Goteborg, Sweden) at a speed of 15 rpm and a maximum torque of 50 N.cm.  
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Figure 1. Values of time, deviation of entry, apex 3D, apex (V), and angle categorized by surgical 

approach (a: half-guided, b: pilot-guided), experience (experienced and novice) and implant site (lower 
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right 1st molar, lower left 1st molar) 

 

All models were subsequently scanned using a CBCT device and the pre‐operative CBCT scan with 

virtual implant position and the post‐operative CBCT scan with actual position were superimposed using 

EvaluNav software (ClaroNav Technology Inc., Toronto, Canada). Following that, the program 

automatically compared the planned and actual implant sites by measuring the following parameters: 

entry 2D deviation (horizontal coronal deviation), apex 3D deviation (3D apical deviation), apex (V) 

deviation (vertical depth deviation), and angular deviation. Time required for the surgical procedure was 

also recorded. 

The result (Table 1, Fig. 1) showed that the experienced surgeon performed less surgical time than 

novice surgeon. According to the accuracy results, implant accuracy between experienced and novice 

surgeons is comparable when using a half-guided approach. However, with a pilot-guided approach, a 

novice surgeon using right-handed drilling showed less accuracy on the left implant surgical site 

compared to the right site. Overall, both pilot-guided and half-guided approaches are suitable for 

surgeons of all skill levels to use in daily practice. 

 

Table 1. Descriptive values categorized by surgical approach (half-guided and pilot-guided) and 

experience (experienced and novice) 
   Half-guided   Pilot-guided 

Experience 
Site 

Value 46 36   46 36 

Experienced Time/min 2.85 3.717  3.55 2.35 

 Entry/mm 0.61 0.62  1.37 0.95 

 Apex (3D)/mm 0.67 1.84  1.04 1.41 

 Apex (V)/mm 0.16 1.25  0.23 0.88 
  Angle/° 0.74 4.67   3.44 2.72 
Novice Time/min 7.333 4.917  4.667 6.00 
 Entry/mm 0.28 0.86  1.02 0.91 
 Apex (3D)/mm 0.72 1.41  0.64 2.58 
 Apex (V)/mm 0.23 0.98  0.19 0.08 
 Angle/° 3.51 1.8   2.86 10.79 

 

In conclusion, the results suggest that both pilot-guided and half-guided approaches are effective options 

for implant placement, but that novice surgeons may need additional training to achieve optimal results 

and less surgical time. Additionally, it was noted that novice surgeons may find it challenging to place the 

implant in the opposite location of their drilling hand using pilot-guided surgical guide. 
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Abstract 
 
Purpose: This study aimed to investigate the performance of novice versus experienced practitioners for 

placing dental implant using freehand, static guided and dynamic navigation approaches. 

Methods: A total of 72 implants were placed in 36 simulation models. Three experienced and three novice 

practitioners were recruited for performing the osteotomy and implant insertion with freehand, surgical 

guide (pilot-drill guidance) and navigation (X-Guide, X-Nav technologies) approaches. Each practitioner 

inserted 4 implants per approach randomly with a 1-week gap to avoid memory bias (4 insertion sites × 3 

approaches × 6 practitioners = 72 implants). The performance of practitioners was assessed by comparing 

actual implant deviation to the planned position, time required for implant placement and questionnaire-

based self-confidence evaluation of practitioners on a scale of 1–30. 

Results: The navigation approach significantly improved angular deviation compared with freehand 

(P < 0.001) and surgical guide (P < 0.001) irrespective of the experience. Surgical time with navigation 

was significantly longer compared to the freehand approach (P < 0.001), where experienced practitioners 

performed significantly faster compared to novice practitioners (P < 0.001). Overall, self-confidence was 

higher in favor of novice practitioners with both guided approaches. In addition, the confidence of novice 

practitioners (median score = 26) was comparable to that of experienced practitioners (median score = 27) 

for placing implants with the navigation approach. 

Conclusions: Dynamic navigation system could act as a viable tool for dental implant placement. Unlike 

freehand and pilot-drill static-guided approaches, novice practitioners showed comparable accuracy and 

self-confidence to that of experienced practitioners with the navigation approach. 

 

Keywords: Dental implant, Surgical guide, Dynamic navigation, Dental education 
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1. Introduction 
Dental implant surgery has become a common practice for novice dental practitioners, which was once 

considered only under the domain of implant specialists and consultants. With its growing popularity for 

oral rehabilitation, the demand for clinical training has also increased [1]. A practitioner must be well-

acquainted with the procedure and should have sufficient training for delivering a successful surgical and 

restorative outcome. However, most practitioners have limited surgical training which could increase the 

risk of inaccurate implant placement and complication rate [2]. In addition, one of the main challenges 

observed by novice practitioners is the optimal controlling of surgical osteotomy and implant positioning. 

A non-ideal implant placement makes the restoration far more difficult with the possibility of increased 

cost and time [3]. 

Recently, the application of cone-beam computed tomographic (CBCT) imaging and virtual planning 

software programs have facilitated accurate implant placement with a relative reduction in intraoperative 

complications [4–6]. Furthermore, the development of computer-guided surgical techniques, including 

static and dynamic approaches have improved the performance of novice practitioners and made it 

possible to transfer the planned implant position to the surgical site with a higher precision and less 

observer variability compared to conventional freehand technique [7, 8]. 

The commonly applied static guided techniques for implant placement involve either a pilot drill guided 

approach (only guided pilot osteotomy followed by freehand osteotomy and implant placement) or a fully 

guided approach (fully guided osteotomy and implant placement) [9]. In general, a static fully guided 

approach offers less deviation compared to a pilot-drill guidance; however, both approaches are 

considered clinically acceptable [10]. Nevertheless, pilot-drill guidance is a more simplified and commonly 

applied technique in a clinical setting with added advantages of controlled irrigation, easy access in 

patients with limited mouth opening and ability to manually adjust implant position or angulation [10]. In 

contrast to static approaches, the dynamic navigation systems have further improved the precision of the 

implant placement procedure which offer a real-time tracking of the drills and implant in accordance with 

the virtual planning [4, 7, 11]. 

Previous studies have reported that novice practitioners offer an improved level of accuracy for implant 

placement with lesser deviation with both static and dynamic guided approaches [5, 10, 12, 13]. However, 

lack of evidence exists related to the assessment of the accuracy and efficacy of novice compared to 

experienced practitioners for dental implant placement with freehand and guided approaches. Therefore, 

the primary aim of this in-vitro study was to evaluate the influence of practitioner’s experience on the 

accuracy of dental implant placement using freehand, static guided and dynamic navigation approaches. 

The secondary aims were to assess the surgical timing and self-confidence of practitioners. The null 
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hypothesis was that no significant differences would exist between novice and experienced practitioners 

for implant placement with freehand, static guided and dynamic navigation approaches in relation to 

accuracy, surgical timing and self-confidence. 

 

2. Methods and materials 

2.1 Study sample 
This research was performed in compliance with the World Medical Association Declaration of Helsinki 

on medical research. The study was approved by the Ethical Review Board of the University Hospitals 

Leuven, Belgium (reference number: S64493). 

Dental implants were placed using three surgical approaches, i.e., freehand, surgical guide (pilot-drill 

guidance) and navigation system (Dynamic Navigation system, X-Guide, X-Nav technologies, LLC, 

Lansdale, PA). Sample size was calculated in G*Power v.3.1 (Heinrich-Heine Universität, Düsseldorf, 

Germany) with the following parameters: angular deviation data extracted from a study as the primary 

outcome variable [14] with alpha level of 0.05, statistical power of 80%, and effect size of 0.08 [15]. The 

calculation resulted in a total sample size of 36 implants required for the comparison of three approaches 

(n = 12 per approach). 

A mandibular CBCT image having missing bilateral first molars (Fédération Dentaire Internationale [FDI], 

lower left 1st molar: 36, lower right 1st molar: 46) was retrospectively recruited from a radiological 

database. The scanning parameters were 110 kV, 8 × 10-cm field of view (FOV), and voxel size of 0.25 

mm. Volumetric reconstruction of the mandibular bone was performed in Mimics software (version 21.0, 

Materialise, Leuven, Belgium). Thereafter, 36 identical simulation models were fabricated using Objet 

Connex 350 printer (Stratasys, Eden Prairie, MN, USA) with an acrylic-based resin (VeroDent MED670, 

Stratasys, Eden Prairie, MN, USA) [16]. 

Three experienced and three novice practitioners were recruited. Experienced practitioners consisted of 

oral surgeons with a clinical experience of over 5 years in implant dentistry and novice practitioners were 

general dentists with no clinical experience in implant dentistry. Prior to research, all practitioners received 

standard hands-on training for virtual planning with implant treatment planning software (DTX Studio™ 

Implant 3.4.3.3, Nobel Biocare AG) and surgical procedure simulation with the navigation system to 

achieve minimal proficiency. In addition, novice practitioners were also trained by an experienced clinician 

for performing implant placement with surgical guide and freehand approaches. 

 

2.2 Treatment planning 
The planning for static-guide-based implant placement was performed using an open-source implant 
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planning software (Blue Sky Plan 4, Blue Sky Bio LLC, Grayslake, IL, USA), where CBCT and intraoral 

scanned (IOS) images of the teeth were imported and registered. As the teeth derived from CBCT data 

set fail to display teeth accurately, the integration of intraoral scanned image through the registration step 

allowed to achieve precise occlusal surface details for the construction of a properly fitting surgical guide. 

Following virtual implant placement, a surgical guide was designed and exported in standard tessellation 

language (STL) format. The guide was printed using Objet Connex 350 printer with a polyjet material 

(MED610, Stratasys, Eden Prairie, MN, USA) and surgical sleeves were fixed onto the guide with an 

adhesive. 

For navigation-based planning, a tracking device (X-Clip, X-Nav Technologies) with 3 radiopaque fiducials 

was fixed to the mandibular anterior and premolar teeth with a thermoplastic impression material. The 

acquired impression surface was printed with a soft transparent material (Tango +, Stratasys, Eden Prairie, 

MN, USA) which was then used to fix the X-clip with the teeth. This allowed replication of the registration 

with exact seating of the device onto the teeth of each model. A CBCT scan (Accuitomo, J. Morita, Kyoto, 

Japan) of the model with the adapted clip was acquired with the following acquisition parameters: 90 kV, 

5 mA, full-scan mode (360°) with Hi-Fi, 0.125 mm voxel size and 8 × 8 cm FOV. 

The CBCT images of both patient and model were imported to Mimics Innovation Suite (Materialise, 

Leuven, Belgium) in Digital Imaging and Communications in Medicine (DICOM) format for aligning and 

combining the two images. This combined DICOM data set and IOS image of the teeth were uploaded 

and registered in DTX Studio implant software. The implants were virtually positioned at 36 and 46 sites 

similar to the static guide-based planning. Thereafter, all the images and virtual planning were transferred 

to the navigation system. Fig. 1 represents the workflow for the surgery. 
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Figure 1. Workflow for surgery 

2.3 Research procedure 
All the practitioners were assigned with the task of inserting implants by each approach. The approach 

order was randomized for each practitioner using the random function of Microsoft Excel (version 16.38, 

Microsoft Corp, Redmond, US) and a 1-week gap was applied in-between approaches to avoid memory 

bias. The surgical procedure was standardized beforehand and the drilling sequence was prepared with 

irrigation based on a protocol recommended by the manufacturer (Wego, China). Following osteotomy, 

implants (customized experimental In-Hex implant, 3.8 mm × 9 mm, Wego, China) were placed using a 

surgical motor (EXPERTsurg™ LUX, KaVo, Germany) at 15 rpm and with a maximum torque of 50 N.cm. 

Each model was fixed onto a dental phantom head (Frasaco GmbH, Tettnang, Germany) for mimicking 

a clinical scenario (Fig. 2a). For the freehand approach, the practitioners used the planned implant 

position displayed on the Blue Sky Plan software as a reference. The static guide-based approach 

involved pilot drill guided osteotomy followed by freehand osteotomy and implant insertion. 

1
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Figure 2. Navigation surgery. a Navigation system overview. b Screen displays implant site preparation 

 

The navigation-based approach involved rigid fixation of the X-clip onto the teeth with the printed 

impression surface of teeth. A rigid fixation allowed to keep the clip stable, as any clip movement and its 

instability during the procedure could induce error in the registration and calibration process of the 

navigation system. Hence, directly impact the accuracy of implant placement. The calibration of tracking 

arrays and handpiece were performed with a calibrating plate for verifying any deviation prior to the 

surgery. Both the drills and implant were tracked live by the system during insertion and the practitioners 

followed the planned path as displayed on the screen (Fig. 2b). 

A post-operative CBCT scan of the drilled models was acquired using prior acquisition parameters. 

Thereafter, both pre-operative and post-operative CBCT images were superimposed to assess the 

deviation between planned and actual implant placement automatically with EvaluNav software 

(ClaroNav Technology Inc., Toronto, Canada). The parameters for assessing deviation included: 

i) entry two-dimensional (2D) deviation (horizontal drilling point deviation),  

ii) apex three-dimensional (3D) deviation (3D deviation at implant’s apex location),  

iii) apex (V) deviation (vertical depth deviation)  

iv) angular deviation. 

The surgical time was recorded. In addition, a validated self-confidence questionnaire was conducted for 

evaluating the self-efficacy of practitioners on a scale of 1–30 for each approach (Additional file 1: Table 

S1) [17]. 
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2.4 Statistical analysis 
Data were analyzed using IBM SPSS Statistics for Windows, version 21.0 (IBM Corp., Armonk, NY, USA). 

Descriptive statistics for all the parameters were recorded (entry 2D, apex 3D, apex V, angulation and 

surgical time). The Shapiro–Wilk test was used to test the normality of data distribution and data 

transformation was applied if required to adjust for the lack of normality. A linear mixed model with two 

fixed factors (experience and approach) and two random factors (surgeon and 3D printed model) was 

applied to examine the differences between each approach. A P value of < 0.05 was considered as 

statistically significant. 

 

3. Results 

A total of 72 implants (4 insertion sites × 3 approaches × 6 practitioners = 72 implants) were placed by three 

experienced (12 implants per practitioner = 36 implants) and three novice practitioners (12 implants per 

practitioner = 36 implants). Two implant sites suffered from perforation at the apical part of lingual bone 

following drilling with freehand approach by experienced practitioners, while novice practitioners 

perforated lingual bone at two sites using surgical guide. In addition, a guide was fractured by a novice 

practitioner during osteotomy. 

 

Table 1. Descriptive values (Mean ± SD, Range) categorized by surgical approach and experience 
Approach Entry/ mm Apex(3D)/ 

mm 
Apex(V)/ 
mm 

Angle/ ° Time/ sec 

Freehand 
     

Experienced 1.11±0.58 
(0.29-2.34) 

1.91±1.06 
(0.97-3.93) 

0.54±0.38 
(0.1-1.2) 

9.73±4.29 
(4.01-17.65) 

3.27±1.43 
(2.12-6.67) 

Novice 1.40±1.01 
(0.09-3.15) 

2.54±1.58 
(0.85-6.33) 

0.60±0.33 
(0.1-1.09) 

8.15±4.73 
(3.37-21.28) 

7.33±3.40 
(3.25-13.17) 

Surgical guide 
     

Experienced 0.83±0.65 
(0.1-2.24) 

1.67±0.94 
(0.38-3.64) 

0.48±0.34 
(0.01-0.97) 

7.27±3.82 
(1.5-13.89) 

3.62±1.78 
(1.62-7.65) 

Novice 0.92±0.38 
(0.31-1.58) 

1.66±0.64 
(0.48-2.75) 

0.41±0.27 
(0.03-0.89) 

7.07±4.38 
(1.45-15.36) 

7.59±2.17 
(4.48-11.28) 

Navigation 
     

Experienced 1.09±0.41 
(0.37-1.67) 

1.55±0.56 
(0.65-2.77) 

0.44±0.55 
(0.04-1.96) 

3.37±1.56 
(1.61-6.68) 

11.58±3.51 
(6.77-19.03) 

Novice 1.14±0.46 
(0.4-2.02) 

1.76±0.71 
(0.81-2.75) 

0.70±0.58 
(0.14-2.2) 

3.19±1.89 
(1.25-6.54) 

13.08±4.62 
(5.75-20.33) 

 

Table 1 describes the mean deviation between planned and actual implant position and time taken by 

each approach. In addition, the statistical significance of implant deviation, time and self-confidence 
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based on approach, experience, and interaction of both is presented in Table 2. Following verification of 

residual values normality in the transformed data, the linear mixed model showed that the navigation 

approach significantly improved angular deviation compared with freehand (P < 0.001) and surgical guide 

(P < 0.001). Furthermore, experienced practitioners showed a slightly higher angular deviation with all 

three approaches compared to novice practitioners without any significant difference. The differences in 

entry 2D, apex 3D and apex V were not significantly different based on approaches, experience or 

interaction of both (P > 0.05). 

 

Table 2. Statistical significance of implant deviation, time and self-confidence considering approach, 

experience, and interaction of both.  
  Approach Experience Approach* 

Experience 
Entry/ mm 0.67 0.28 0.88 

Apex(3d)/ mm 0.15 0.19 0.78 

Apex(v)/ mm 0.39 0.23 0.41 

Angle/ ° <0.001 0.35 0.84 

Time/ sec <0.001 <0.001 0.001 

Self-confidence 0.48 0.63 0.56 

Numbers in bold refer to statistically significant values. 

 

The surgical time with navigation approach was significantly longer than that of freehand (P < 0.001) and 

surgical guide (P < 0.001). In addition, novice practitioners showed an overall increase in surgical time 

compared with experienced practitioners (P < 0.001). A significant difference in interaction was observed, 

which indicated that both experience and approach affected the surgical time (P = 0.001). The time taken 

by novice practitioners with navigation approach was significantly longer compared to experienced 

practitioners. 

The findings of the self-confidence questionnaire (Table 3) suggested no significant difference between 

self-confidence of both novice and experienced practitioners. However, novice practitioners considered 

that their performance improved using both guided approaches (Fig. 3), where they showed high level of 

confidence and lower anxiety with both guided approaches compared to the freehand approach. The 

scoring of novice practitioners’ self-confidence with the navigation approach (median score = 26) was 

comparable to that of experienced ones (median score = 27). In addition, experienced practitioners 

reported highest self-confidence scores with static guide (median score = 29), followed by freehand 

(median score = 28) and navigation system (median score = 27). 
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Table 3. Self-confidence scoring of each practitioner.  
  

1. How 
confide
nt were 
you 
during 
the 
proced
ure? 

2. What 
was 
your 
surgical 
skill 
level 
during 
the 
proced
ure? 

3. Were 
you 
worried 
during 
the 
proced
ure? 

4. Were 
you 
anxious 
during 
the 
proced
ure? 

5. Based 
on your 
perform
ance 
today, 
would 
you have 
liked to 
have 
avoided 
this 
procedu
re 
altogeth
er? 

6. How 
comfort
able 
were 
you with 
the 
indepen
dent 
planning 
and 
performi
ng the 
procedu
re? 

Tot
al 

Freeha
nd 

Experienced 1 4 5 5 4 5 5 28 
 

Experienced 2 4 4 3 3 4 3 21  
Experienced 3 5 5 5 5 5 4 29  
Novice 1 1 2 2 2 3 1 11 

 
Novice 2 2 3 3 3 5 3 19  
Novice 3 4 4 4 5 4 5 26 

Surgic
al 
guide 

Experienced 1 5 4 5 5 5 5 29 

 
Experienced 2 5 5 4 3 4 4 25  
Experienced 3 5 5 5 5 5 5 30  
Novice 1 3 3 3 3 5 4 21 

 
Novice 2 5 4 5 5 5 4 28  
Novice 3 3 3 4 5 3 5 23 

Navigat
ion 

Experienced 1 4 5 5 4 5 4 27 
 

Experienced 2 5 5 5 4 5 5 29 
 

Experienced 3 3 5 3 3 4 3 21  
Novice 1 4 4 5 4 5 4 26  
Novice 2 3 4 3 4 4 4 22 

 
Novice 3 5 5 5 5 3 5 28 
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Figure 3. Median and inter-quartile range of self-confidence scores for each approach categorized by 

experience. Boxes comprise of 25th and 75th quartiles and median values, upper and lower whisker 

indicate highest and lowest values 

 

4. Discussion 
The implementation of computer-guided technologies promise a novel approach for dental implant 

surgery. This study investigated the accuracy, time-efficiency and self-confidence of novice practitioners 

compared to experienced practitioners for implant placement with freehand, static pilot drill-based 

guidance and navigation approaches. The findings suggested that the navigation approach could acted 

as a viable medium for performing implant surgery by novice practitioners with comparable accuracy, 

self-confidence and surgical time to that of experienced practitioners with the same level of training. 

The angular deviation of implant placement was significantly better with navigation compared to freehand 

and surgical guided approach. As the freehand drilling mainly depends on the practitioner’s theoretical 

and clinical skills which are often acquired over a long period of time during training; therefore, it was 

difficult for novice practitioners to place the implant in an ideal position. In addition, posterior implant 

placements are generally less accurate than anterior ones owing to difficult access and indirect 

visualization which might have further contributed toward lower accuracy with the freehand approach [18]. 

In contrast, pilot-drill guidance offered the advantage of improved implant deviation compared to the 

freehand approach. However, it was still prone to a large angular deviation which could have resulted 

due to an undesirable mechanical tolerance between the drills and sleeve or accumulative error at the 

P = 0.48 P = 0.62

P = 0.24
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data acquisition, software processing and template manufacturing steps of the digital workflow [19]. In 

addition, the findings suggested that experienced practitioners offered higher angular deviation compared 

to novice practitioners with all the approaches. However, the difference was quite minimal which is 

negligible from a clinical point of view and could be attributed to the small sample of practitioners. Another 

reason could be related to the level of attention to detail and concentration, where novice practitioners 

might have paid more attention to avoid any unnecessary change in angulation. 

The navigation approach provided the most accurate approach for implant placement with an excellent 

performance by novice practitioners. These findings were consistent with previous studies, where the 

navigation system offered significant improvement in implant placement accuracy compared to surgical 

guide and freehand approach [14, 20, 21]. At the same instance, a risk of implant deviation still exists 

with the navigation system due to the errors generated during the workflow steps of image acquisition, 

tracking clip stability, registration and calibration [14]. A practitioner should be aware of these errors which 

is crucial for a successful treatment outcome. However, the navigation approach allowed novice 

practitioners to achieve similar accuracy to that of experienced ones which was in accordance with 

another study [13]. Similarly, Sun et al. and Wu et al. found that the experience level of practitioners did 

not affect the accuracy of implant placement with the navigation approach [22, 23]. 

The surgical time required by the navigation approach was significantly longer than the surgical guide or 

freehand approach which was consistent with a previous study [15]. This increased time was attributed 

to the necessary calibration of the drills and implant required throughout the procedure to allow for optimal 

tracking. In addition, reconfirmation of the correct drilling and implant placement by viewing both the 

screen and patient led to a further increase in time. It should be noted that the navigation system has a 

steep learning curve, where its more frequent usage could allow mastering the system with a higher 

confidence in the technology and further lower the surgical time [24, 25]. At the same instance, surgical 

time with the navigation system could be less compared to other approaches in complex surgical cases 

with limited direct access or tight interdental spaces which preclude the usage of surgical guide tubes [8, 

15]. 

Although the dynamic navigation system offers comparable accuracy to a static guided approach, its 

application is limited in a clinical practice due to high costs, steep learning curve, early developmental 

stage and risk of inaccurate implant placement due to system error associated with either registration or 

calibration steps especially in completely edentulous cases [26]. Furthermore, the majority of evidence 

assessing the accuracy of navigation systems is based on in vitro studies and clinical studies are still 

scarce. Hence, further clinical studies are required to confirm whether their implant positional accuracy 

and time efficiency is maintained in a real clinical scenario, where different patient- and surgery-related 
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factors could negatively impact the final outcome. In contrast, ample evidence exists justifying the 

satisfactory results of static guided approaches in both partial and complete edentulous cases with a 

relatively lower price tag [6]. 

In the present study, novice practitioners required more time to perform the surgery irrespective of the 

approach, which could be attributed to the proficiency and surgical skills of the practitioners. The self-

confidence of novice practitioners was high with both guided approaches, which was partially consistent 

with another study, where observers showed better performance and high confidence with a static guided 

approach [27, 28]. Furthermore, the novice practitioners expressed a desire to use the navigation system 

for future implantations which was consistent with previous studies [24, 29]. Experienced practitioners 

were more confident with a static guided approach compared to navigation system as they preferred 

relying on already achieved skills rather than pursuing new innovative technologies with complex 

workflows [30]. Hence, their performance with static guide was more predictable and less stressful which 

was confirmed by a higher self-confidence score. 

The study had certain limitations. First, the findings of this study should be interpreted with caution due 

to its in-vitro study design. Second, a lack of variability existed in relation to implant insertion sites with 

only involvement of posterior region. Third, the study only assessed pilot-drill guidance. Hence, further 

studies are required to investigate the practitioner’s performance based on a static fully guided approach 

and with the inclusion of variable implant insertion sites. 

 

5. Conclusions 
The dynamic navigation system could act as a viable tool for dental implant placement by novice 

practitioners, who were able to achieve comparable accuracy and self-confidence to that of experienced 

practitioners. The navigation approach offered a more accurate implant placement with significant 

improvement in angular deviation compared to the pilot-drill surgical guide and freehand approach 

irrespective of practitioner’s experience. Future clinical studies are required for the assessment of 

external validity and implant placement accuracy with navigation system in a clinical practice. 
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Abstract 
 
Lack of evidence exists related to the investigation of the accuracy and efficacy of novice versus 

experienced practitioners for dental implant placement. Hence, the following in vitro study was conducted 

to assess the accuracy of implant positioning and self-efficacy of novice compared to experienced 

surgeons for placing implant using freehand (FH), pilot drill-based partial guidance (PPG) and dynamic 

navigation (DN) approaches. The findings revealed that DN significantly improved the angular accuracy 

of implant placement compared with FH (P < 0.001) and PPG approaches (P < 0.001). The time required 

with DN was significantly longer than FH and PPG (P< 0.001), however, it was similar for both novice and 

experienced practitioners. The surgeon’s self-confidence questionnaire suggested that novice 

practitioners scored higher with both guided approaches, whereas experienced practitioners achieved 

higher scoring with PPG and FH compared to DN. In conclusion, implant placement executed under the 

guidance of DN showed high accuracy irrespective of the practitioner’s experience. The application of 

DN could be regarded as a beneficial tool for novices who offered high confidence of using the navigation 

system with the same level of accuracy and surgical time as that of experienced practitioners. 

 

 

Keywords: Dental Implantation; Surgery, Computer-Assisted; Surgical Navigation Systems; Dimensional 

Measurement Accuracy; Self Efficacy; Operative Time 
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1. Introduction 
Dental implant surgery is a widely accepted therapeutic option for partially and fully edentulous patients. 

An ideal three-dimensional (3D) implant positioning and angulation is a prerequisite to ensure its long-

term stable esthetic and functional outcome and to facilitate a correct prosthetic phase [1]. In contrast, 

non-ideal implant positioning may cause collateral damage to the vital anatomical structures within the 

vicinity of the placed implant and lead to certain intra-operative complications, such as maxillary sinus 

and/or cortical perforation, inferior alveolar nerve injury and damage to adjacent teeth [2]. Furthermore, 

an imprecise positioning of the implant has also been known to cause peri-implant bone loss and peri-

implantitis at follow-up [2]. Hence, it is necessary that a surgeon should have a high level of experience 

and sufficient 3D spatial awareness to avoid complications associated with non-ideal placement of dental 

implants [3]. 

The wide adoption of cone-beam computed tomography (CBCT) coupled with computer-aided design 

and computer-aided manufacturing (CAD/CAM) in a dental practice has improved the implant placement 

accuracy compared to freehand (FH) approach and allowed delivery of predictable prosthetically-driven 

treatment outcomes [4]. The two main computer-assisted techniques include implant placement with 

either CBCT-generated static surgical guide (SG) or dynamic navigation (DN) system [5]. Implant 

placement by static surgical guide can be classified as fully or partially guided, where full guidance refers 

to the control of all steps from osteotomy till implant placement through a guide [6]. It may be beneficial 

in cases with irregular bone quality, where minor implant movement is associated with higher deviation 

[7]. On the contrary, partial guidance (pilot drill or half-guided approach) involves only the use of a pilot 

drill or the complete osteotomy before implant placement is guided, followed by free-handed manual 

drilling and implant placement. A fully-guided approach offers less implant deviation compared to its 

partial counterpart [8]. However, pilot drill based partial guidance (PPG) is still the most commonly 

employed technique in a dental practice owing to its simplistic nature, reduction in irrigation problems, 

allowing minor implant position adjustment if required and easier control of implant placement in patients 

with limited mouth opening [9,10]. 

Unlike SG-based approaches, DN system allows real-time guidance by tracking the optical markers fixed 

to the hand-piece and patient, thereby, making it possible to monitor the drills and implant to follow the 

planned position [7]. It offers the advantage of real-time computer-guided freehand approach, where the 

operator has more freedom to adjust the implant position with the possibility of flapless surgery, lower 

morbidity, and a predictable outcome in both normal and complex cases with limited access or poor 

visualization [11,12]. 
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Recent studies have demonstrated that both SG and DN provide comparable accuracy which is higher 

than a FH approach for training novice surgeons, dental implant education and guiding experienced 

surgeons for a safe and predictable outcome [6,10,13-16]. However, to our knowledge no study exists 

investigating the accuracy and efficacy of novice versus experienced practitioners by comparing FH, SG 

and DN approaches. Therefore, the following study was conducted to quantitatively assess the accuracy 

of implant positioning and to qualitatively investigate the performance and self-confidence of novice 

surgeons compared to experienced surgeons for placing implants using FH, PPG and DN approaches.    

 

2. Material and methods 

2.1 Model fabrication 
The study protocol was approved by the Ethical Review Board of the University Hospitals Leuven, 

Belgium (reference number: S64493). All experiments were performed in accordance with relevant 

guidelines and regulations. Informed consent was obtained from all participants. Inclusion criteria were 

CBCT dataset of lower jaw with sufficient bone quality and quantity for 3D model fabrication and implant 

placement, and a partial edentulous jaw with missing bilateral 1st molars. Exclusion criteria involved 

presence of pathological conditions or artefacts in the lower jaw.  

A total of 36 identical simulation models with bilaterally missing 1st molar (72 implant placement sites) 

were designed in Mimics software (version 22.0, Materialise NV, Leuven, Belgium) and printed with Objet 

Connex 350 printer (Stratasys, Eden Prairie, MN, USA) using an acrylic-based resin (VeroDent MED670, 

Stratasys, Eden Prairie, MN, USA) [17]. 

 

2.2 Operators 

An in-vitro study was conducted to compare three surgical protocols, which consisted of FH, PPG and 

DN system (Navident, ClaroNav, Toronto, Ontario, Canada). Three experienced dental practitioners with 

over 5-years of experience in implant surgery and three novice dental practitioners with no experience in 

surgical implantology participated in the study. Each participant received prior training and calibration. 

The training session for navigation was provided to all practitioners which consisted of theoretical 

knowledge and drilling simulation practice to establish minimal proficiency for implant placement (at least 

10 osteotomies on simulation models) with the DN system. Both experienced and novice practitioners 

had no prior training of using DN systems. Furthermore, novice practitioners were also provided with a 

theoretical and surgical simulation training by an experienced operator for using both FH and PPG 

approaches to optimally place implants.  

All operators were randomly assigned the task of implant placement by FH, PPG or DN approach, with 
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random sequence generated using Excel. In order to minimize bias, there was a one-week washout 

period between each method. Out of the 36 printed models (72 implant placement sites), 6 models (12 

implant placement sites) were allocated to each operator, where they placed implants on 2 models by 

each approach (2 implant placement sites per model = 4 implants per approach).  

 

2.3 Treatment planning 
The planning was performed by importing CBCT and intraoral scanned (IOS) images to an implant 

planning software (Blue Sky Plan 4, Blue Sky Bio LLC, Grayslake, IL, USA), where the implants were 

placed virtually, and surgical guides were designed following consultation with a consultant implantologist.  

Both the implant planning and SG were exported in standard tessellation language (STL) format. 

Subsequently, the surgical guide was fabricated with Objet Connex 350 printer and surgical sleeves were 

adhesively fixed onto the guide. Later, the CBCT dataset, IOS image and STL of virtual implant planning 

were imported to the user-interface of the DN system where virtual implants oriented identical to the 

planned position. 

 

2.4 Surgical Procedure 
The surgical procedure was standardized beforehand, and the drilling sequence was prepared with 

irrigation following the manufacturer’s protocol utilizing customized experimental In-Hex implants (3.8mm 

x 9mm, Wego, China). Implants were inserted using a motor unit (OsseoSet, Nobel Biocare AB, Goteborg, 

Sweden) at a speed of 15 rpm and a maximum torque of 50 N.cm. The drilling order was as follows: 2.2-

mm-round drill followed by 2-mm pilot drill, 3.3-mm form drill, and 3.8-mm final drill. 

Each printed model was placed in a dental phantom head to mimic a real clinical setting. During surgery 

with the FH approach, osteotomy drilling and implant placement were performed in accordance to the 

virtual surgical plan (Fig. 1a). For the PPG, a tooth-supported guide was placed, and a single pilot drill 

was used for the initial drill, followed by FH drilling (Fig. 1b).  

The DN approach involved firm attachment of the tracking tag to the anterior teeth of the jaw using silicone 

material (Fig. 2a). A tracking tag is a device which helps to maintain the registration between the jaw and 

its CBCT image and continuously tracks the patient’s jaw pose throughout the procedure. For 

guaranteeing a standard protocol, each operator used the same landmarks for the trace registration step. 

The registration accuracy was assessed to ensure optimal tracking prior to the surgical procedure. Each 

drill and implant required calibration before their insertion into the bone. The real-time visual feedback on 

a screen was used to guide the osteotomy preparation and the implant was placed according to the 

planned implant position. The location, angle and depth of drilling in relation to the predetermined 
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treatment plan on the monitor were used to assist the practitioners (Fig. 2b).  

 

   
                                     (a)                                                                    (b) 

Figure 1 Surgical photos. (a) Freehand surgery; (b) Surgical guide surgery. Surgical guide fitted intraorally. 

 

 

(a)                                                                    (b) 

Figure 2. Navigation surgery. (a) Overview of navigation system; (b) Operation screen. 

 

2.5 Performance evaluation 
A validated self-confidence questionnaire was provided to all the practitioners, where they scored their 

performance with each approach on a combined scale of 1 to 30 (1=least confident, 30=most confident) 

based on six questions (supplementary Table 1) [18]. This self-confidence scoring provided the 

“perceived self-efficacy” of the practitioners. In addition, time required for the procedure was also 
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recorded.  

 

2.6 Accuracy assessment 
Following implant placement, all models were scanned with a CBCT device (Accuitomo, J. Morita, Kyoto, 

Japan) using a standard CBCT scanning protocol (90 kV, 5 mA, 360° full-scan mode with Hi-Fi, 0.125 

mm voxel size and 8 × 8 cm field of view). The pre‐operative CBCT scan with virtual implant position and 

the post‐operative CBCT scan with actual position were superimposed using EvaluNav software 

(ClaroNav Technology Inc., Toronto, Canada) as shown in Fig. 4.  Thereafter, the planned and actual 

implant positions were compared automatically in the software by measuring the following variables: entry 

two-dimensional (2D) deviation (horizontal coronal deviation), apex 3D deviation (3D apical deviation), 

apex (V) deviation (vertical depth deviation) and angular deviation.   

 

 

Figure 4. Superimposition of planned and actual placed implant positions. 

 

2.7 Statistical analysis  
Data were analyzed using IBM SPSS Statistics for Windows, version 21.0 (IBM Corp., Armonk, NY, USA). 

Descriptive statistics were calculated and presented as mean and standard deviation for entry 2D, apex 

3D, apex V, angulation and surgical time. Self-confidence scores were examined by median and 

interquartile range. Normal distribution was assessed by means of normal quantile plots and data 

transformation was applied for achieving normal distributed data. The log-transformation was too strong, 

as confirmed by the points of the normal quantile plot which curved downward. Hence, a square-root 

transformation was applied for achieving normal distribution of the residual data. A linear mixed model 

with two crossed fixed factors (experience and method) and two random factors (surgeon and 3D printed 
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model) were applied to evaluate the discrepancies amongst the three methods and the role of experience. 

Based on experience, as there were 3 novice and 3 experienced practitioners who inserted implants in 

two models, hence these were regarded as random factors. When the interaction was significant, a 

comparison was performed for methods per experience level and the experience level per method. 

Significance level was set at 5%. 

 

3. Results 
Out of the total 72 implant placements, perforation of the lingual wall was observed at four implant sites 

(2 sites by experienced practitioners with FH approach; two sites by novice practitioners with PPG 

approach). Furthermore, a surgical guide was fractured by a novice practitioner during surgical drilling.  

According to the self-confidence questionnaire's scoring, overall navigation system scored significantly 

lower compared to freehand and surgical guided approaches (P=0.007 and P<0.001, respectively). 

Significant differences were observed based on the interaction of experience and approaches (P=0.013). 

Experienced operators showed a high self-confidence score in favor of PPG, followed by FH and DN. 

However, overall novice practitioners perceived that their performance improved when using PPG and 

DN approaches as shown in Fig. 5.  

 

 

Figure 5. Median and inter-quartile range of the scoring of self-confidence assessment achieved with 

each method categorized by experience. Boxes comprise of 25th and 75th quartiles and median 

values, upper and lower whisker indicate highest and lowest values. FH: freehand, PPG: pilot drill 

based partial guidance, DN: dynamic navigation 
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Table 1 describes the mean deviation between planned and actual implant position and time consumption 

with each approach, where lower values indicate towards better implant positioning. The findings 

suggested that entry 2D deviation was lowest with the PPG approach, irrespective of operator’s 

experience. In addition, novice operators showed the highest apex 3D deviation using FH approach. The 

angular deviation was lowest with the DN, followed by PPG and FH approaches. Based on timing, implant 

placement using DN was most time-consuming and FH technique offered the least time consumption. 

 

Table 1. Descriptive values (Mean±SD) by surgery method and experience.  
Method Entry(2D)/ 

mm 
Apex(3D)/ 
mm 

Apex(V)/ 
mm 

Angle/ ° Time/ second 

FH 
     

Experienced 1.11±0.58 1.91±1.06 0.54±0.38 9.73±4.29 196.25±85.56 

Novice 1.40±1.01 2.54±1.58 0.60±0.33 8.15±4.73 439.67±203.97 

PPG 
     

Experienced 0.83±0.65 1.67±0.94 0.48±0.34 7.27±3.82 217.25±107.00 

Novice 0.92±0.38 1.66±0.64 0.41±0.27 7.07±4.38 455.42±130.34 

DN 
     

Experienced 1.28±0.55 1.70±0.77 0.41±0.25 4.03±1.53 934.75±773.24 

Novice 1.07±0.52 1.54±0.94 0.70±0.71 2.88±2.51 900.58±379.23 

FH: freehand, PPG: pilot drill based partial guidance, DN: dynamic navigation  

 

Based on linear mixed model analysis in Table 2, the angular deviation differed significantly amongst 

different surgical approaches (P < 0.001), where DN significantly improved the angular accuracy 

compared with FH (P < 0.001) and PPG approaches (P < 0.001). No significant differences were observed 

between experience of the operators (P=0.10) or interaction of methods and experience (P=0.57). In 

addition, the platform deviations (entry 2D, apex 3D and apex V) were similar irrespective of surgical 

approach, experience or interaction of both (P > 0.05).  
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Table 2. Statistical significance of implant deviation and time considering approach, experience, and 

interaction of both.   
Method Experience Method * Experience 

Entry/ mm 0.05 0.64 0.38 

Apex(3d)/ mm 0.07 0.59 0.31 

Apex(v)/ mm 0.47 0.45 0.61 

Angle/ ° <0.001 0.10 0.57 

Time/ sec <0.001 <0.001 0.017 

Numbers in bold indicate to statistically significant values. 

 

The DN time was significantly longer (P< 0.001) compared with FH and PPG approaches (Table 2). A 

significant difference for interaction was observed (P=0.017), which indicated that both experience and 

method affected the surgical time. Time required by experienced practitioners with the FH and PPG 

approaches was significantly faster than that of novice practitioners. However, the time required for DN 

was almost similar independent of the practitioner’s experience.  

 

4. Discussion 
The present study evaluated the accuracy and performance of novice versus experienced practitioners 

for performing implant surgery using FH, PPG and DN approaches, which has not been thoroughly 

investigated in the prior available literature. The recorded parameters included accuracy of implant 

placement by assessing its deviation compared with the virtual plan, scores of self-confidence and 

operation time. The findings suggested that the overall navigation approach provided more accurate 

implant placement and offered equal time-consumption independent of the experience. Novice 

practitioners reported more confident with the DN approach compared to experienced practitioners. 

Furthermore, perforations in the lingual cortical region by FH and PPG were observed due to difficult 

access and the need for indirect visualization at the posterior region of the phantom. This issue did not 

exist with the DN approach as the practitioners could track the real-time drilling and implant positioning 

on a screen. A novice practitioner also fractured a SG during drilling. As the short inter-arch distance at 

the posterior region makes it difficult to appropriately place the drill in the sleeve of the surgical guide if a 

surgeon is not optimally trained, hence causing the guide to fracture. 

Although the PPG offers the advantage of reducing the implant deviation in comparison with the FH 

method, there is still a risk of inaccurate implant positioning due to the difficulty of inserting the drills 
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through the sleeves of the guide and keeping them in a centric position. The deviation for surgical guide 

might result from the tolerance between the sleeve and drill in surgical guide and the steps of digital 

workflow from data acquisition, software processing and template manufacturing [19]. In contrast, implant 

placements executed under the guidance of the DN system showed better accuracy, which was 

consistent with previous studies [20, 21]. However, the cumulative error of navigation system might 

generate from the workflow of image processing, planning calibration, registration and surgical proficiency 

[16]. 

The time required for FH and PPG was significantly faster than the DN approach. This was consistent 

with previous results that DN increased surgical time compared with FH [15, 22]. The difference was due 

to the involvement of the necessary calibration steps for navigation throughout the surgical procedure. 

Another reasoning could be related to the competency of the technique related to hand-eye coordination, 

where the frequent use of navigation and mastering the approach might lower the surgical time. In 

contrast, the implant position with PPG, is completely dictated by the guide for the pilot drill and therefore 

the operators can quickly perform the drilling through the guide without strict monitor. Although DN 

requires a relatively longer surgical time compared to the FH or PPG, the potential time-efficiency in 

relation to planning or changing the surgical plan and delivery of the treatment on the same visit cannot 

be denied. In contrast, SG planning and manufacturing requires more time, especially in cases where 

third party companies are given the responsibility of guide preparation [11]. The surgical timing was 

significantly lower for experienced practitioners with FH and PPG, which could be due to their higher 

surgical proficiency. At the same instance, novice practitioners took longer as they required more time to 

orient and angulate drills. However, the DN approach led to almost similar timing irrespective of the 

experience.   

The novice practitioners showed increased satisfaction with the assistance of guided approaches, which 

was consistent with previous studies [15, 23]. This implies that novice practitioners tend to adapt to the 

guided technologies that help decrease the fear of surgical complications by conventional FH protocol. 

Furthermore, a high self-evaluation scoring was also confirmed by the improved accuracy.  

Amongst the guided approaches, PPG received higher self-confidence scoring compared to DN by both 

novice and experienced practitioners. Due to the guidance by pilot-drill orientation, the later FH drilling 

offers more self-control to the practitioner, where a surgeon’s personal fine motor control allows 

determination of the correct implant positioning by manually inspecting each step. For navigation, the 

practitioners could self-control the motor depend on the guidance displayed by the tracking system. The 

low confidence reported in the application of navigation could be explained by that it requires a certain 

level of technical skills, manual dexterity and hand-eye coordination to perform the surgery while looking 



Article 5 Computer-assisted surgery on 3D-printed models | 114 
 

at the screen and avoiding any visual blockage of the tracking path. In spite of that, the novice 

practitioners believed that their performance improved with the navigation approach during the short 

training time compared with FH, which enables visualization of the osteotomy in real-time with minimal 

stress or risk of complications. On the other hand, experienced operators scored their self-satisfaction 

with DN even lower than novices because the experienced surgeons prefer the approach with well-

documented higher success rate and are less prone to change by challenging an innovative treatment 

modality into practice [24]. However, it should be kept in mind that the ability of dynamic navigation to 

permit correction of implant positioning by displaying immediate feedback of the actual versus planned 

positioning of the drills and implant reduces the risk of harming patients compared to other approaches 

[14].  

The study had certain limitations. Firstly, the study was only limited to implant surgery at the site of lower 

mandibular 1st molar with small sample size, further studies should expand sample size and include other 

sites in both maxilla and mandible to assess its accuracy and performance of operators. Secondly, the 

simulated model lacked soft tissue and the factor of flap elevation was not assessed. Thirdly, the results 

of this in vitro study need to be interpreted with caution which might not be applied to patients in a real 

clinical setting. However, the applied approach could still act as an in vitro teaching model for improving 

novice surgeons’ dexterity and their skills before they perform the procedure on real patients. Finally, a 

PPG protocol was applied in the current study which is a more commonly used approach in a dental 

practice. However, future studies should also investigate the impact of half-guided and fully-guided 

approaches to reach a better conclusion. 

 

5. Conclusion 
The dynamic navigation assisted implant placement technique significantly improved the angular 

accuracy of the implant placement compared with both FH and PPG approaches irrespective of the 

practitioner’s experience. The application of DN could be regarded as a more beneficial approach for 

novices who were more confident of using the navigation system for implant placement and were able to 

perform the procedure at the same level of accuracy and time as that of experienced practitioners.  
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Abstract 
 
Objectives: To propose and evaluate the performance of a deep learning-based convolutional neural 

network (CNN) model for automatic tooth segmentation on intraoral scanned (IOS) images.  

Material and methods: A dataset of 761 IOS images (380 upper jaws, 381 lower jaws) was acquired by 

intraoral scanner. Inclusion criteria consisted of a full set of permanent teeth, teeth with orthodontic 

brackets and partially edentulous dentition. A multi-step 3D U-Net pipeline was designed for automated 

tooth segmentation on IOS images. The model performance was assessed in terms of time and accuracy. 

Furthermore, the model was deployed on an online cloud-based platform, where a separate subsample 

of 18 IOS images was used to test the clinical applicability of the model by comparing three modes of 

segmentation i.e., automated artificial intelligence-driven (A-AI), refined (R-AI) and semi-automatic (SA) 

segmentation.  

Results: The average time required for automated segmentation was 31.7±8.1 s per jaw. The CNN model 

showed an intersection over union (IoU) score of 91%, where a full set of teeth achieved the highest 

performance metrics and partially edentulous group scored the lowest. In terms of clinical applicability, 

SA took on average 860.4 s per case compared to R-AI which showed a 2.6-fold decrease in time (328.5 

s). Furthermore, R-AI offered higher performance and reliability compared to SA irrespective of the 

dentition group.  

Conclusions: 3D U-Net pipeline was found to be accurate, efficient and consistent for automatic tooth 

segmentation on IOS images. 

Clinical relevance: The online cloud-based platform could act as a viable alternative for IOS 

segmentation. 

 

Keywords: Artificial intelligence; Machine learning; Neural networks, computer; Optical imaging; 

Dentition; Dentistry 
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1. Introduction 
The conventional dental impression techniques have been widely replaced by digital intraoral scanning, 

which is more precise, non-invasive, harmless and offers more comfortability to the patient [1]. In addition, 

integration of intraoral scanned (IOS) data into the digital workflows of prosthodontics, orthodontics, 

implant dentistry, and orthognathic surgery has improved the efficiency of treatment planning and 

simplified clinical procedures by eliminating labor-intensive and time-consuming steps associated with 

conventional physical impressions [2].  

A crucial step in digital dental workflows is the three-dimensional (3D) segmentation or delineation of 

teeth from the IOS dataset. The acquisition of an accurate and efficient tooth segmentation is a 

prerequisite for clinical applications requiring tooth realignment for treatment simulation or follow-up 

evaluation, such as in orthodontics or implantology [3-5]. This could in turn aid in achieving a predictable 

and stable treatment outcome [6].  

Currently semi-automatically assisted segmentation algorithms integrated in imaging software programs 

remain the method of choice for segmenting teeth on IOS images. These algorithms are generally 

designed by extracting geometric feature regions such as surface contour lines, surface curvature and 

harmonic field from the IOS data [7-9]. Even though semi-automatic segmentation tools have been widely 

employed in digital dental workflows, these are prone to certain limitations, such as lack of robustness, 

requirement of manual correction, labor intensiveness, expertise-dependence, and excessive time 

consumption. To overcome these limitations, a considerable amount of effort has been put into developing 

automatic segmentation tools. However, it still remains a challenging task owing to the substantial 

variability of the IOS data amongst different patients due to the presence of large-scale morphological 

and geometric variations of different teeth, missing or disarranged teeth and abnormal dental conditions, 

such as supernumerary teeth. Additionally, the presence of teeth rotation and crowding also makes it 

difficult for the segmentation algorithms to delineate the margins of each individual tooth separately. This 

difficulty is exacerbated in orthodontic patients with dental braces or in cases with indistinguishable 

gingival boundaries [5].   

Recently, artificial intelligence (AI) has sporadically evolved and gained traction in the field of medicine 

mainly due to its potential to automate tasks in a manner that mimics human intelligence [10]. Deep-

learning based convolutional neural networks (CNNs), a subcategory of AI, has been considered as the 

most suitable method for medical image analysis [11, 12]. Several studies have been conducted where 

CNNs have been successfully employed with satisfactory performance to segment teeth from IOS 

datasets [13]. However, the main limitation associated with these studies have been either relying on a 

small sample size or failure to investigate the robustness of the networks to handle deviations from a 
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natural dentition and variability in dental status such as missing teeth, crowding or orthodontic brackets 

[4, 5, 14-17].  

Therefore, the aim of the current study was to propose and validate the performance of CNN model to 

automatically segment teeth on IOS images with a full set of natural teeth, orthodontic brackets and 

partially edentulous dentition.  

 

2. Materials and Methods 
The World Medical Association's Declaration of Helsinki on medical research was followed in conducting 

this study. Ethics approval was acquired from the University Hospitals Leuven's Ethics Committee 

Research (reference number: S65188), which provided informed consent for the work. This study 

followed the Artificial intelligence in dental research checklist (Appendix Table 1) [18]. 

 

2.1 Dataset  
The dataset consisted of 761 IOS images (380 upper jaws, 381 lower jaw) acquired by Trios 3Shape 

intraoral scanner (Copenhagen, Denmark) between June 2020 and April 2021, from LORTHOG Register, 

Department of Oral & Maxillofacial Surgery, University Hospitals Leuven. All data were retrospectively 

collected and anonymized. Inclusion criteria were complete scans of jaws consisting of a full set of 

permanent teeth, orthodontic patients with braces and prosthodontic patients with partially edentulous 

dentition. Presence of any local pathological condition was excluded. Afterwards, the total dataset was 

randomly divided into three subsets for training (n=609), validation (n=76) and testing (n=76).  

The ground truth datasets were labeled by human experts. IOS data were prepared by semi-automatic 

segmentation (SA) in OrthoAnalyzer software (3Shape A/S, Copenhagen, Denmark) and exported in 

standard tessellation language (STL) format. The segmentation task was randomly performed by three 

individual dental practitioners following initial training and calibration. The IOS image was firstly 

preprocessed by preparing a model set then assigned to the segmentation field. Thereafter, missing teeth 

were deselected, followed by manual indication of distal and mesial points for creating a cut spline which 

outlined the tooth contour. A sculpt was created and toolkit for addition or removal was used for minor 

correction of segmentations with over- or under-estimation. Extra correction was applied for cases with 

brackets by removing the connecting wire and isolating the teeth. Finally, the segmented teeth were 

correctly labeled according to the FDI notation using 3-matic 14.0 software (Materialise, Leuven, Belgium). 

All segmentations and labeling were checked by a second observer for quality control and alterations 

were carried out if necessary. 
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2.2 AI model architecture 
A multi-step 3D U-Net pipeline was designed for automated tooth segmentation on IOS images [19]. The 

proposed multi-step approach using U-Net models aims to refine the tooth segmentation at each step by 

improving the data quality, and increasing the size of the training dataset via data augmentation (Fig. 1). 

This approach leads to a more accurate and robust segmentation result. Here is a more detailed 

explanation of each stage:  

1. Preprocessing the raw STL data:  

a. Region of interest (ROI) extraction: ROI was extracted from the raw STL data, which corresponds 

to the tooth structure. This is typically done by manually selecting the tooth region or automatically 

segmenting it using thresholding or other segmentation techniques.  

b. Smoothing: To improve the quality of the ROI, the data is smoothed using various techniques 

such as smoothing filters, morphological operations, or level set methods. The purpose of smoothing is 

to reduce noise and artifacts in the data, which can improve the performance of the segmentation model. 

2. Data augmentation: To increase the size and variability of the training dataset, data augmentation 

techniques are applied to the preprocessed ROI data. This includes operations such as scaling, rotation, 

flipping, and deformations, which create new training samples from the original data. Data augmentation 

can improve the generalization performance of the model by making it more robust to variations and 

artifacts in the input data. The Adam optimizer, an adaptive learning rate optimization algorithm, was 

employed for training the U-Net networks.  

To apply U-Net to mesh data, we used several procedures to pre-process the data for creating a suitable 

input for the neural network. Here are the steps followed:  

1. STL mesh file was converted into a volumetric representation via voxelization.  

2. Volumetric representation was divided into smaller sub volumes, called patches. Each patch was used 

as input to the network.  

3. For each patch, features were extracted using convolutional layers. In U-Net, the encoder part consists 

of a series of convolutional layers with pooling operations to extract high-level features from the input.  

4. A symmetric decoder architecture was used to reconstruct the output segmentation. The decoder part 

of the U-Net consists of a series of up convolutional layers with skip connections from the encoder part 

to reconstruct the segmentation.  

5. Binary cross-entropy was used as loss function to train the U-Net on labeled mesh data. The labels for 

each patch were obtained by applying a labeling process to the mesh.  

Once trained, the U-Net can be used to predict the segmentation for new patches of mesh data. 
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Figure 1. The multi-step approach using U-Net models 

 

2.3 Validation metrics 
The following metrics were used to evaluate the performance of CNN model: 

• Intersection over union (IoU): 

!"# = %&
(%& + )& + )*) 

• Timing: The runtime of the AI was recorded in seconds for each segmentation. 

• Dice similarity coefficient (DSC):  

	-./ = 2 × %&
(%& + )&) + (%& + )*) 

TP = true positives; TN = true negatives; FP = false positives; FN = false negatives. 

When applied to mesh data, IOU and DSC were used to compare the overlap between two sets of 

triangles or polygons. To calculate these metrics, the labeled area of interest was compared to the ground 

truth or reference data. The mesh data had been represented as a collection of vertices and faces. To 

apply IOU or DSC, the labeled regions on the mesh were converted into a binary mask, where each 

vertex was either labeled as "inside" or "outside" the labeled region. Specifically, in this case, this was 

done by projecting the 3D model onto a 2D plane and creating a binary image mask using traditional 

image segmentation methods. In the case of a crown surface dataset, typically only the visible or labeled 
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side of the crown was analyzed and evaluated. The un-labeled side was ignored during the calculation 

of IOU and DSC since it was not part of the labeled area of interest. When calculating the metrics, only 

the labeled regions were taken into account. The unlabeled regions were ignored, and their contribution 

to the final metric score was treated as if they were correctly segmented. It is important to note that the 

accuracy of the evaluation metrics can be affected by the quality of the labeling and segmentation process, 

as well as the specific characteristics of the mesh data being analyzed. 

2.4  Clinical applicability of the CNN model 

The CNN model was transferred to an online cloud-based platform (Virtual Patient Creator, Relu Inc, 

Leuven, Belgium), allowing users to upload STL files of IOS data and generate automated AI-driven 

segmentation (A-AI). The platform also provides users with tools for correction and generating a refined 

AI-driven segmentation (R-AI). Hence, a test was also conducted to evaluate the clinical applicability of 

the tool with an additional subsample of 18 IOS images, which included IOS images of cases with a full 

set of permanent teeth (n=6), teeth with orthodontic brackets (n=6) and partially edentulous dentition 

(n=6). Timing, accuracy and consistency of the A-AI and R-AI segmentations were compared to the SA 

method. The time required by SA was calculated starting from STL data import into OrthoAnalyzer till the 

generation of a segmented model. The time for A-AI was calculated automatically by the algorithm, and 

the time for R-AI was computed by adding the time needed for A-AI and refinements. Two independent 

observers performed SA and R-AI based segmentations to assess the inter-observer reliability. For intra-

observer variability, one observer repeated the same segmentations at an interval of two weeks. 

Furthermore, accuracy of A-AI and R-AI was evaluated by comparison with SA-based segmentation. 

2.5 Statistical analyses  

IBM SPSS Statistics for Windows, version 21.0 (IBM Corp., Armonk, NY, USA) was used to evaluate the 

data. Descriptive statistics were calculated for each evaluation metric. Normality was assessed by means 

of normal quantile plots and log-transformation was applied for normal distributed data. Intra-class 

correlation coefficient (ICC) was applied for calculating the inter and intra-observer reliability. Test-retest 

reliability was also calculated. Timing was compared between different methods using a two-way 

repeated measure ANOVA [20]. A p-value of <0.05 was considered statistically significant. 
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3. Results 

3.1 AI model performance 
Within the 76 scans used for validation, 3 groups of cases were identified: full set of teeth (n= 41), teeth 

with brackets (n=13) and partially edentulous dentition (n= 22). Table 1 provides an overall segmentation 

performance of the CNN model compared to the ground-truth and results obtained for each individual 

group. The time required by CNN model for segmentation was 31.7±8.1 seconds per jaw irrespective of 

the dentition group. An IoU of 91.0±5.5% and DSC of 94.6±4.8% was observed which indicated towards 

an optimal overlap compared to the ground truth. Based on each individual dentition group, the full set of 

teeth achieved the highest performance metrics, whereas the partially edentulous group scored the 

lowest. 

 

Table 1. AI model segmentation performance (Mean±SD) compared to ground-truth.  
Dentition group IoU (%) DSC (%) Timing* (s) 
Full teeth 92.2±3.8 95.5±3.2 33.0±7.4 
Partially edentulous  89.3±8.0 93.0±7.5 31.2±10.6 
Brackets 90.0±3.4 94.6±2.0 28.8±2.5 
Average 91.0±5.5 94.6±4.8 31.7±8.1 

Note: * Timing for AI segmentation per upper jaw or lower jaw. DSC, Dice coefficient score; IoU, 

Intersection over union; SD, standard deviation 

 

Fig. 2 illustrates a few examples of automated segmentations of different types of dentition. The CNN 

model effectively generated dentition with lingual fixed retainers, brackets and partially erupted, crowded 

or missing teeth. Although crowded teeth exhibited optimal segmentation, further improvements need to 

be applied to the CNN model for distinguishing boundaries in cases with extreme crowding. 

 

 
Figure 2. Example of AI segmentation results of upper and lower jaws for the different dentition groups 

Full teeth Crowded teeth With brackets With missing teethWith partially erupted 
teeth
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3.2 Clinical applicability  
The average timing based on each segmentation approach is presented in Table 2. Time required by the 

A-AI method was 66.7 s for one case (both upper and lower jaw), whereas the SA approach took on 

average 860.4 s (14.3 min). R-AI segmentation took 328.5 s, with a 2.6-fold decrease compared to the 

SA approach. The two-way repeated measures ANOVA demonstrated a significant interaction between 

the applied method and operator (p=0.02). A significant difference was observed in timing between 

methods (SA vs R-AI) for both operators (p<.001). The timing of R-AI showed a significant difference 

between observers (p=0.04), whereas no significant difference existed with the SA approach (p=0.13). 

 

Table 2. Timing of segmentation methods. 
Method  Mean (s) SD (s) Min (s) Max (s) 
SA 860.4 211.4 551.0 1348.0 
A-AI 66.7 8.5 55.3 79.5 
R-AI 328.3 181.1 101.6 739.5 

Abbreviations: A-AI, automated artificial intelligence-driven segmentation; R-AI, refined artificial 

intelligence-driven segmentation; SA,semi-automatic method; Max, maximal value; Min, minimal value; 

SD, standard deviation; s, seconds 

 

The test-retest reliability pointed to a high correlation (r=0.873) [21]. Both intra- and inter-operator 

reliability of SA and R-AI were excellent, suggesting a high consistency of the training dataset. As shown 

in Table 3, R-AI had a higher observer reliability compared to SA irrespective of the dentition group, which 

further verified the effectiveness of the tool in performing reproducible and superior segmentation 

compared to a conventional SA approach.  

 

Table 3. Inter and intra-observer assessment based on ICC values in terms of IoU (%) for SA and R-AI 

methods  
Intra-operator consistency 
 SA R-AI 
Full teeth 93.7 98.2 
Partially edentulous  95.4 95.5 
Brackets 90.9 98.9 
Inter-operator consistency 
 SA R-AI 
Full teeth 92.9 98.3 
Partially edentulous  94.2 97.1 
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Brackets 91.9 98.2 

Abbreviations: A-AI, automated artificial intelligence-driven segmentation; R-AI, refined artificial 

intelligence-driven segmentation; SA,semi-automatic method; ICC, Intra-class correlation coefficient; IoU, 

Intersection over union 

 

An overview of the accuracy assessment of A-AI and R-AI compared to SA for all subgroups is displayed 

in Table 4. Both A-AI and R-AI had a high IoU of 90.5% and 92.5% respectively. The study demonstrated 

that R-AI had better performance than A-AI in terms of the 95th percentile of the Hausdorff Distance (HD), 

which represents the maximum distance between the predicted model and ground truth. The results 

showed that the brackets group had the highest 95% HD, followed by the full teeth group and partially 

edentulous group, respectively. A visual illustration of AI segmentation with and without manual 

refinement is presented in Fig. 3. The online platform allowed users to define the boundaries under lingual 

fixed retainers and between interdental areas which the AI failed to capture.  

 

Table 4. Accuracy assessment of A-AI and R-AI vs SA methods (Mean±SD) 
Metric Dentition A-AI vs SA R-AI vs SA 
IoU (%) Full teeth 91.3±1.0 94.4±0.8 
 Partially edentulous  91.3±3.5 91.8±6.2 
 Brackets 88.7±5.4 91.1±6.4 
 Average 90.5±4.0 92.5±5.4 
DSC (%) Full teeth 95.4±0.5 97.1±0.4 
 Partially edentulous  95.4±2.0 95.6±3.6 
 Brackets 93.9±3.1 95.2±3.6 
 Average 94.9±2.2 96.0±3.1 
95% HD 
(mm) 

Full teeth 0.0030±0.0032 0.0029±0.0033 

 Partially edentulous  0.0001±0.0001 0.00006±0.0001 
 Brackets 0.7619±1.1795 0.7609±1.1778 
 Average 0.2549±0.7384 0.2546±0.7373 

Abbreviations: A-AI, automated artificial intelligence-driven segmentation; R-AI, refined artificial 

intelligence-driven segmentation; SA, semi-automatic method; DSC, Dice coefficient score; IoU, 

Intersection over union; SD, standard deviation; 95% HD, 95th percentile of the Hausdorff Distance. 
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Figure 3. Visual comparison of tooth segmentation with (a) A-AI (automated AI-driven segmentation) 

and (b) R-AI (refined AI-driven segmentation). R-AI allowed refinement for the accurate tooth 

segmentation boundary as highlighted in the boxes 

 

4. Discussion 
In digital dentistry, detection of teeth on IOS images aids in treatment planning and follow-up evaluation. 

In light of the recent technological advancements, the current study developed a robust fully automated 

CNN model and provided an easy-to-use interactive tool for IOS tooth segmentation using the Virtual 

Patient Creator platform. This model provided a time-efficient segmentation while ensuring accuracy and 

consistency. In addition, the performance of the CNN model was verified for clinical applications by 

deploying it into an online cloud-based platform where manual corrections could be performed, which 

further facilitates its integration into a clinical practice.  

Previous studies did not explore the robustness of their proposed automated IOS segmentation 

algorithms for segmenting teeth with brackets or partially edentulous dentition [5, 14-17]. Therefore, the 

current study included a variety of normal (full set of teeth) and abnormal cases (partially edentulous 

group and bracket group) to assess the generalizability of the AI model across a dataset with 

heterogeneous geometry. The AI model not only showed a high performance for segmenting normal 

dentition but also its accuracy was confirmed in complex cases such as crowded or misaligned teeth 

which are normally difficult to detect considering the overlapped regions with adjacent teeth [17]. Unlike 

a previous study, the presented model was able to accurately segment teeth with brackets and partially 

edentulous jaws [16]. Furthermore, it also outperformed other competing methods for recognizing the 

boundary between noisy gingiva and partially erupted teeth [22]. 

Up till now, different deep learning models have been proposed for tooth segmentation on IOS images 

with variable performances and these have been primarily applied for the segmentation of a full set of 

normal teeth. Zanjani et al. proposed a Mask-MCNet framework and showed an IoU value of 98% which 

might have resulted due to a small dataset of 120 IOS images and the variability amongst cases was not 

specified [14].  Lian et al. evaluated MeshSegNet and demonstrated a DSC value of 95.2% with a dataset 

of 30 upper-jaw cases, however, failed to properly handle missing teeth and brackets [16]. The TS-MDL 

(a) A-AI                                                                     (b) R-AI
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model proposed by Wu et al. reached a DSC value of 95.3% based on a relatively small sample of 36 

upper IOS images, with reduction of performance in malocclusion cases [17]. Zhang et al. proposed 

TSGCNet which had a low IoU of 89% for segmenting incisors [23]. In comparison to the aforementioned 

studies, our model showed a high performance with a DSC score of more than or equal to that of other 

proposed models [5, 14-17, 23]. Only one study reported a superior performance of a CNN model 

(TSegNet) compared to our findings for segmenting both normal and abnormal cases with a DSC of 98%. 

However, the authors failed to specify a separate DSC scoring for both types of cases and did not identify 

the number of abnormal cases. Furthermore, their model also yielded incomplete segmentation of 

wisdom and rudimentary teeth [22]. In contrast, the 3D U-Net pipeline presented in this study showed an 

average DSC of 94.6% amongst different groups of cases, which confirms its ability to handle both regular 

and complicated dental morphologies. More importantly, the integration of the CNN model into an online 

cloud-based platform allows user refinements (R-AI method) with interactive tools, which is important for 

segmentation of complex malformations of teeth, thus further confirming its suitability for clinical 

applications. 

Although the presented model showed high performance for automated tooth segmentation, there is still 

room for improvement in cases with low scanning quality and extremely crowded teeth. The differences 

in 95% HD results between the dentation groups may be attributed to the complexity and characteristics 

of the dental cases in each group. For instance, the Brackets group may have had more complicated 

dental cases, such as those with severe malocclusion and indistinct boundaries between braces and 

swollen gingiva. In contrast, the full teeth group may have had simpler cases, including those with minor 

alignment issues or no malocclusion, resulting in fewer deviations from the ground truth. The partially 

edentulous group may have had the simplest cases, with only a few missing teeth, resulting in the lowest 

deviations from the ground truth. As the improvement in model performance followed by R-AI was minimal, 

this implies that fewer corrections are required. The R-AI substantially eliminates labor-intensive steps 

with a 2.6-fold decrease in time consumption and higher consistency compared to SA method. The Virtual 

Patient Creator platform could serve as useful tool for planning and follow-up assessment in a clinical 

practice with the integration of an IOS image segmentation model. The platform has also integrated 

automated segmentation of other computed tomography-derived anatomical structures, such as teeth, 

maxillary complex, mandible, mandibular canals and pharynx [20, 24, 25], which could further optimize 

the digital workflows. As this study describes training of the model based on data derived from a single 

intraoral scanner, further strengthening of the algorithm is planned in the near future by introducing scans 

from different devices. 
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5. Conclusion 
The proposed 3D U-Net pipeline outperformed state-of-the-art methods for automated tooth 

segmentation on IOS images with accurate, efficient and consistent results. Its clinically applicability is 

strengthened by the use of an online cloud-based platform for automated segmentation and interactive 

refinement. 
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Discussion 
Digital technology is an important development direction in dentistry and an inevitable trend. The use of 

digital technologies in the practice of dentistry can improve the accuracy and efficiency of dental 

procedures, and lead to better outcomes for patients. It allows for more precise and efficient treatment, 

better communication and collaboration between dentists, improved patient education and can be cost 

effective. Digital dentistry can include 3D printing, computer-assisted surgery, and artificial intelligence 

[1]. The main objectives of this doctoral thesis were to provide clear view on how these digital 

technologies simplify the workflow in dental practice. It's important to weigh the potential benefits and 

drawbacks of digital dentistry before implementing it in a practice, and to consider the specific needs and 

resources of the practice and its patients. 

3D printing has the potential to revolutionize the field of dentistry. However, the high price of 3D printing 

technology has hindered its widespread use. Therefore, in article 1, we systematically analyzed the 

accuracy of maxillofacial skeletal model generated from desktop and professional 3D printers. Based on 

the meta-analysis results, desktop printed models offered comparable mean absolute error (MAE) (0.12 

mm) to professional printed models (0.10 mm). Regardless of printer type between desktop and 

professional printer, it was discovered that the printing technology and layer resolution might have an 

impact on the accuracy of the model. Considering the printing technology, MJ (0.09 mm) and SLS (0.09 

mm) offered the lowest MAE, followed by BJ (0.11 mm), SLA (0.11 mm) and DLP (0.13 mm), and the 

highest deviation was observed with the fused deposition modeling (0.22 mm). Different printing 

technologies have varying printing protocols and different levels of precision. Models printed with a layer 

resolution of 0.15 mm or less were found to be more accurate than those printed with a resolution of ≥0.2 

mm. The accuracy of 3D printed maxillofacial models is a complex issue that depends on various factors, 

including data acquisition, computer data processing, model fabrication, and post-processing. It has been 

suggested that a dimensional deviation of up to 2% discrepancy has been identified as the clinically 

acceptable accuracy for 3D printed skeletal models [2]. The application of a model, however, should 

determine how accurate it is. For instance, the contouring of the osteosynthesis or reconstruction plates 

and the creation of surgical guides require a higher level of accuracy than models used for educational 

purposes [3, 4]. On the basis of these findings, we hypothesized that the accuracy of skull models 

fabricated by 3D printers at low-, medium-, and high-cost would be similar.  In article 2, we were the first 

to assess the efficacy and accuracy of CBCT-derived skull models fabricated by 3D printers at different 

cost levels using the 3D evaluation analysis. As in previous research on the accuracy of 3D-printed skulls, 

only 2D evaluations using linear measurements, which are prone to human error, are taken into account 

[5]. At the same instance, literature evaluating the accuracy of low-cost printed models using 3D 
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evaluation approaches only included the mandible but left out the maxillofacial complex. Therefore, both 

maxillofacial complex and mandible were assessed in this study. Our findings revealed that while low-

cost FFF printers had the highest discrepancy in terms of overall mean absolute error (1.33 ± 0.24 mm), 

medium-cost SLA and high-cost MJ-based printers were able to replicate the skeletal anatomy with 

optimal accuracy (0.07 ± 0.03 mm	and	0.07 ± 0.01 mm, respectively). Additionally, the longer printing time 

of desktop printers, up to 5 times longer than the medium- and high-cost printer, can further influence its 

efficiency in a 3D workflow, thereby, confirming its inapplicability for clinical applications. However, it still 

provides a practical and cost-effective solution for simulating procedures and anatomical education. 

This suggests that the medium-cost SLA and high-cost MJ printers may be more suitable for clinical 

applications, while desktop FFF 3D printers may not be suitable for clinical use due to their lower accuracy 

and longer printing time, they can still serve as a cost-effective solution for simulating procedures and 

anatomical education. It is important to note that the study was limited to a small sample of three printers 

with different technologies and materials, and therefore cannot be generalized to all printers. The 

accuracy of 3D printed maxillofacial models is a complex issue that depends on various factors including 

data acquisition, computer data processing, model fabrication, and post-processing. Further investigation 

should be done to objectively assess the amount of error contributed at each stage of the printing process 

and determine how to optimize printing of skeletal models in a healthcare setting by standardizing printer 

settings. Choosing the right kind of desktop 3D printer for medical use is particularly essential because 

technology for high-quality desktop printers is constantly evolving, which may soon lead to an increase 

in accuracy. 

The advancement of 3D printing technology has greatly improved the accuracy and realism of patient-

specific skeletal models; however, it is uncertain if these models provide optimal haptic feedback for 

dental implant hands-on training. Therefore, an investigation into the haptic feedback of different 3D-

printed models in article 3 is crucial to determine their effectiveness in preparing dental professionals for 

real-world procedures. This study was the first to print trabecular mandibular bone from patient’s CBCT, 

and 6 different printers and materials were used for model fabrication. Based on the surgeon’s subjective 

evaluation, model MJ (acrylic-based resin) offered the highest score, followed by model SLA (acrylic-

based resin), model FFF1 (polycarbonate filament), model DLP (acrylic-based resin), model FFF2 

(polylactic acid filament), whereas model SLS (polyamide filament) scored the lowest. The results have 

shown that the haptic feedback of the printed model is highly dependent on the mechanical properties of 

the material, 3D printer, and printer settings, highlighting the importance of understanding the relationship 

between the 3D-printed models and the haptic feedback. The mechanical properties of the 3D printed 

material, such as tensile strength and elastic modulus, must be in accordance with the biomechanical 
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characteristics of the tissue in order to accurately replicate the haptic feedback and mechanical 

characteristics of cortical bone and trabecular bone [6, 7]. Bioprinting materials, such as hydrogels and 

bioinks, have shown to be promising in replicating the mechanical and structural characteristics of the 

targeted tissue. This research may assist in identifying materials that can be used to create products for 

anatomical teaching or surgical simulation [8]. However, considering the haptic feedback of 3D printed 

models for training, the selection of materials corresponding to the tissue properties during 3D printing is 

required. The MJ-based model made with acrylic-based resin provided the best haptic feedback, which 

might be used as a standard for simulating dental implant surgery even though none of the models in this 

study were able to perfectly recreate the haptic perception of real bone.  

In article 4 and article 5, we utilized the protocol outlined in article 3 to design training models for training 

novice surgeons using computer-assisted surgery. It is believed that computer-assisted technologies, 

such as navigation and surgical guides, can help to improve the accuracy of procedures for surgeons of 

varying experience levels [9, 10]. Following this, our study was the first to evaluate whether navigation 

systems and static surgical guides can reduce the learning curve for novice surgeons, allowing them to 

perform implant surgery with comparable accuracy and confidence to experienced surgeons. There are 

various types of navigation systems utilized in dental implant surgery. Specifically, article 4 and article 5 

examine the use of two different systems, the X-Guide (X-Nav technologies, LLC, Lansdale, PA) and 

Navident (ClaroNav, Toronto, Ontario, Canada). Different navigation systems use different hardware and 

software, which can affect their ease of use. While the goal of the study is not to determine a superior 

navigation system, the selection of the appropriate system should take into consideration factors such as 

the specific needs of the practice, the level of accuracy required, and the budget available. 

We have conducted a pilot study to compare the accuracy of pilot-guided and half-guided surgical guide 

in dental implant placement. The results indicated that both techniques are effective options for implant 

placement, but that novice surgeons may require additional training to achieve optimal results and 

reduced surgical time. As pilot-drill partial guidance is the most commonly used technique in dental 

practice due to its ease of use [11], it offers more surgeon control compared to half-guided and fully-

guided surgical guides which rely heavily on the guide itself and require less monitoring. Therefore, in our 

following study, we compared pilot-drill surgical guide with dynamic navigation and freehand methods to 

further investigate whether guided approaches can enhance novice surgeons' surgical performance, 

where the performance of experienced surgeons serve as a clinical reference. 

The results showed that both navigation systems significantly improved angular deviation compared with 

freehand and pilot-guided surgical guide approaches, regardless of the surgeon’s level of experience. 

This improvement in accuracy can be attributed to the real-time, visual guidance provided by the 
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navigation systems during the entire procedure. These findings are consistent with previous studies that 

have shown a significant improvement in implant placement accuracy with the use of navigation systems 

compared to surgical guides and freehand techniques [12, 13]. However, it was also observed that the 

surgical time using navigation systems was significantly longer than freehand or surgical guide methods. 

This additional time can be attributed to the need for calibration of the navigation systems, which can 

prolong the surgical time. Despite the longer surgical time, the benefits of navigation systems, such as 

increased precision and accuracy, reduction of errors, and the ability to make real-time adjustments, can 

outweigh the additional time required for calibration. Additionally, navigation systems can lead to reduced 

thermal damage and mouth opening requirements [14]. To minimize the additional time required for 

calibration and improve surgical proficiency, it is important to provide adequate training and support for 

the surgical team [15]. In contrast to navigation systems, surgical guides necessitate additional time for 

fabrication, which can be completed prior to the surgical procedure. Conversely, navigation systems offer 

the ability to deliver treatment in a single visit. The results showed that novice practitioners, in particular, 

may require more time to perform the surgery, regardless of the approach used, highlighting the 

importance of surgical skills and proficiency. 

It was also found that novice surgeons had higher self-confidence with both guided approaches, while 

experienced surgeons were more confident with static guides. The use of navigation systems may be 

more beneficial for novice surgeons as it can provide them with an additional tool to learn and practice, 

and increase their confidence in performing dental implant procedures. Novice surgeons may also find it 

easier to learn the navigation system, as it can provide them with visual cues and real-time feedback, 

which can be more intuitive than traditional methods of training. However, experienced surgeons may 

prefer to continue using traditional methods, as they may not find the navigation systems necessary for 

their level of expertise, or may not feel comfortable with the additional time required for calibration. 

Additionally, it is important to note that navigation systems rely on technology and may fail or malfunction 

during the procedure, which can cause delays and increase the risk of errors. Improving the technology 

to make the tracking method even faster, robust and user-friendly could be an important step to enhance 

the application of navigation systems in dental implant surgery. 

Surgical guides can be an effective tool in training novice surgeons for implant surgery by providing visual 

guidance, increasing precision and accuracy, and reducing potential errors. These guides offer the 

opportunity for novice surgeons to practice procedures in a controlled environment before performing 

them in real-life settings. However, it is important to note that surgical guides may not be suitable for all 

implant surgery procedures, particularly those with limited direct access or tight interdental spaces.  
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Overall, while both guided methods have their advantages and disadvantages, they should be used in 

conjunction with traditional surgical education methods to enhance the training process for novice 

surgeons. While guided techniques provide an additional tool for novice surgeons to learn and practice, 

traditional dental implant training methods remain essential for a comprehensive understanding and 

mastery of dental implant procedures. 

AI has the potential to revolutionize the field of dentistry by improving the accuracy and efficiency of the 

segmentation process of CBCT and IOS data. Previous studies have demonstrated the ability of AI to 

accurately and efficiently identify regions of interest from CBCT data [16, 17]. The use of AI in the 

segmentation process has the potential to greatly optimize this process, particularly in the context of 3D 

printing. By automating the segmentation process, AI can save a significant amount of time compared to 

manual or semi-automated segmentation by human operators, where the segmentation process can be 

a very cumbersome and time-consuming task in the workflow of articles 2 to 5.  AI algorithms can be 

trained to identify and segment specific structures with a high degree of accuracy and consistency. This 

can reduce the potential for human error and variability, which can be a significant problem in manual or 

semi-automated segmentation. Building an online platform that integrates data from multiple imaging 

modalities has the potential to create a digital virtual patient, which can aid in automatic anatomy detection, 

treatment planning, and surgical simulation. Tooth segmentation on IOS data is a crucial step in clinical 

applications such as implant planning, orthodontics, treatment monitoring, and diagnosis [18]. However, 

current state-of-the-art methods lack the robustness to handle human variability. Article 6 aimed to 

design and validate the performance of a deep learning-based CNN model for automated tooth 

segmentation on IOS images. Our study was first to include a full set of permanent teeth, teeth with 

orthodontic brackets and partially edentulous dentition. A multi-step 3D U-Net pipeline was designed for 

automated tooth segmentation on IOS images and the 3D U-Net model was also deployed on an online 

cloud-based platform, where surgeons can refine the segmentation results of AI. The average time 

required for automated segmentation was 31.7±8.1s per jaw, which is significantly faster compared to 

manual segmentation on the software. The CNN model showed high performance of IOS segmentation 

with an IoU score of 91%. Additionally, the online cloud-based platform offers dental practitioners accurate, 

consistent and efficient segmentation results and provides tools for refinement if the AI segmentation 

results are not satisfactory. The presented CNN model for automated tooth segmentation showed high 

performance overall, but there are still challenges to be addressed, particularly with crowded teeth. To 

improve the algorithm, the plan is to introduce scans from different devices, as a way to increase the 

diversity of the data [19]. A robust AI platform can be achieved by utilizing a large and diverse dataset for 

training the model, while also protecting patient privacy through the implementation of encryption 
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methods and federated learning. Encryption of patient medical data ensures confidentiality and security, 

while federated learning allows for the training of the model locally on devices, with only updates being 

shared to a central server [20, 21]. 

 

Conclusions 
According to the report of a systematic review and meta-analysis presented in article 1, the accuracy of 

the maxillofacial skeletal models printed with desktop printers was comparable with that of professional 

printers. However, regardless of printer type, it was found that the printing technology, material, and layer 

resolution had an impact on the accuracy of the model. However, due to the results being based on a 

small number of investigations using various imaging and printing devices with varied settings, these 

findings should be interpreted with caution. As mentioned in article 2, we found that stereolithography 

and multi-jetting were able to replicate the skeletal anatomy on a medium- and high-cost printer, 

respectively, with the least amount of error, thereby confirming their applicability for clinical application, 

such as pre-bending plates and fabricating implants. Desktop/consumer grade FFF printer offered the 

highest discrepancy which might not be optimal for clinical applications, however, it could serve as a cost-

effective alternative for surgical simulation, anatomical education, and/or patient communication. Based 

on the findings of article 3, the MJ-based model made with acrylic-based resin provided the best haptic 

feedback, which might be used as a standard for simulating dental implant surgery even though none of 

the models in this study were able to perfectly recreate the haptic perception of real bone. According to 

article 4, we have found that using a dynamic navigation system, novice surgeons were able to place 

dental implants with comparable accuracy and self-confidence to that of experienced surgeons. 

Regardless of the practitioner's level of experience, the navigation method provided a more accurate 

implant placement with a significant improvement in angular deviation compared to the pilot-drill surgical 

guide and freehand approach. Article 5 showed that implant placement executed under the guidance of 

dynamic navigation showed high accuracy irrespective of the practitioner’s experience. The application 

of dynamic navigation could be regarded as a more beneficial approach for novices who were more 

confident of using the navigation system for implant placement and were able to perform the procedure 

at the same level of accuracy and time as that of experienced practitioners. Article 6 of this thesis 

proposed 3D U-Net pipeline for automated tooth segmentation on IOS images and it outperformed the 

state-of-the-art methods with accurate, efficient and consistent results. Its clinically applicability is 

strengthened by the use of an online cloud-based platform for automated segmentation and interactive 

refinement. 
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Future perspectives 
- The imaging and printing parameters need to be optimized, and the amount of error introduced 

at each stage of the printing process need to be assessed before the print can be qualified for 

medical-surgical applications. 

- To print real bone-like structures, it is necessary to quantitatively analyze the mechanical 

characteristics of the printing material and the printer's capabilities. Future research should 

evaluate the capabilities of 3D printers for producing bone structures with various densities and 

evaluating the haptic feedback. 

- Future clinical studies are required for the assessment of implant placement accuracy and 

efficacy for novice surgeons using navigation system in a clinical practice. There is a need to 

expand sample size and include other sites in both maxilla and mandible to assess its accuracy 

and performance of operators. Investigating the impact of half-guided and fully-guided 

approaches is essential in order to reach a better conclusion. 

- Introducing a large and varied dataset via encryption or federated learning can help to strengthen 

the AI algorithm. 
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Summary 
 
The use of digital technologies in the practice of dentistry can improve the accuracy and efficiency of 

dental procedures, and lead to better outcomes for patients. It allows for more precise and efficient 

treatment, better communication and collaboration between dentists, improved patient education and can 

be cost effective. Digital dentistry can include 3D printing, computer-assisted surgery, and artificial 

intelligence. The main objectives of this doctoral thesis were to provide clear view on how these digital 

technologies simplify the workflow in dental practice. It's important to weigh the potential benefits and 

drawbacks of digital dentistry before implementing it in a practice, and to consider the specific needs and 

resources of the practice and its patients. 

3D printing has the potential to revolutionize the field of dentistry. However, the high price of 3D printing 

technology has hindered its widespread use. Therefore, in article 1, we systematically analyzed the 

accuracy of maxillofacial skeletal model generated from desktop and professional 3D printers. Based on 

the meta-analysis results, desktop printed models offered comparable mean absolute error (MAE) (0.12 

mm) to professional printed models (0.10 mm). Regardless of printer type between desktop and 

professional printer, it was discovered that the printing technology and layer resolution might have an 

impact on the accuracy of the model. The lowest MAE was provided by material jetting (0.09 mm) and 

selective laser sintering (0.09 mm), whereas fused deposition modeling showed the greatest difference 

(0.22 mm). In comparison to models printed with a resolution of ≥0.2 mm, models with a layer resolution 

of 0.15 mm or less were found to be more accurate. The accuracy of 3D printed maxillofacial models is 

a complex issue that depends on various factors, including data acquisition, computer data processing, 

model fabrication, and post-processing. A dimensional deviation of up to 2% discrepancy has been 

identified as the clinically acceptable accuracy for 3D printed skeletal models. However, the accuracy of 

a model should depend on its area of application. On the basis of these findings, in article 2, we were 

the first to assess the efficacy and accuracy of CBCT-derived skull models fabricated by 3D printers at 

different cost levels using the 3D evaluation analysis. We found that stereolithography and multi-jetting 

were able to replicate the skeletal anatomy on a medium- and high-cost printer, respectively, with the 

least amount of error, thereby confirming their applicability for clinical application, such as pre-bending 

plates and fabricating implants. Desktop/consumer grade FFF printer offered the highest discrepancy 

which might not be optimal for clinical applications, however, it could serve as a cost-effective alternative 

for surgical simulation, anatomical education, and/or patient communication. It is important to note that 

the study was limited to a small sample of three printers with different technologies and materials, and 
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therefore cannot be generalized to all printers. The advancement of 3D printing technology has greatly 

improved the accuracy and realism of patient-specific skeletal models; however, it is uncertain if these 

models provide optimal haptic feedback for dental implant hands-on training. The study in article 3 is the 

first to print trabecular mandibular bone from patient’s CBCT, and 6 different printers and materials were 

used for model fabrication. Based on the surgeon’s subjective evaluation, model MJ (acrylic-based resin) 

offered the highest score, followed by model SLA (acrylic-based resin), model FFF1 (polycarbonate 

filament), model DLP (acrylic-based resin), model FFF2 (polylactic acid filament), whereas model SLS 

(polyamide filament) scored the lowest. However, none of the models in this study were able to perfectly 

recreate the haptic perception of real bone. The results have shown that the haptic feedback of the printed 

model is highly dependent on the mechanical properties of the material, 3D printer, and printer settings, 

highlighting the importance of understanding the relationship between the 3D-printed models and the 

haptic feedback. The MJ-based model made with acrylic-based resin provided the best haptic feedback, 

which might be used as a standard for simulating dental implant surgery. In article 4 and article 5, we 

utilized the protocol outlined in article 3 to design training models for training novice surgeons using 

computer-assisted surgery. It is believed that computer-assisted technologies, such as navigation and 

surgical guides, can help to improve the accuracy of procedures for surgeons of varying experience levels. 

Following this, our study was the first to evaluate whether guided approaches can enhance novice 

surgeons' surgical performance, where the performance of experienced surgeons serve as a clinical 

reference. According to article 4, we have found that using a dynamic navigation system, novice 

surgeons were able to place dental implants with comparable accuracy and self-confidence to that of 

experienced surgeons. Regardless of the practitioner's level of experience, the navigation method 

provided a more accurate implant placement with a significant improvement in angular deviation 

compared to the pilot-drill surgical guide and freehand approach. Article 5 showed that implant placement 

executed under the guidance of dynamic navigation showed high accuracy irrespective of the 

practitioner’s experience. The application of dynamic navigation could be regarded as a more beneficial 

approach for novices who were more confident of using the navigation system for implant placement and 

were able to perform the procedure at the same level of accuracy and time as that of experienced 

practitioners. Article 6 of this thesis proposed 3D U-Net pipeline for automated tooth segmentation on 

IOS images and it outperformed the state-of-the-art methods with accurate, efficient and consistent 

results. Its clinically applicability is strengthened by the use of an online cloud-based platform for 

automated segmentation and interactive refinement. 

The integration of digital technologies in dental treatment, surgical training, and education has been 

shown to enhance accuracy and efficiency. However, it is crucial to carefully consider the potential 
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benefits and drawbacks before implementing these technologies in a practice, taking into account the 

unique needs and resources of both the practice and its patients. 
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