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Abstract 

Objective 

To develop and validate a layered deep learning algorithm which automatically creates 3D 

surface models of the human mandible out of CBCT imaging. 

 

Materials & methods 

Two convolutional networks using a 3D U-Net architecture were combined and deployed in 

a cloud-based artificial intelligence (AI) model. The AI model was trained in two phases and 

iteratively improved to optimize the segmentation result using 160 anonymized full skull 

CBCT scans of orthognathic surgery patients (70 preoperative scans and 90 postoperative 

scans). Finally, the final AI model was tested by assessing timing, consistency, and accuracy 

on a separate testing dataset of 15 pre- and 15 postoperative full skull CBCT scans. The AI 

model was compared to user refined AI segmentations (RAI) and to semi-automatic 

segmentation (SA), which is the current clinical standard. The time needed for segmentation 

was measured in seconds. Intra- and inter-operator consistency were assessed to check if 

the segmentation protocols delivered reproducible results. The following consistency 

metrics were used: intersection over union (IoU), dice similarity coefficient (DSC), Hausdorff 

distance (HD), absolute volume difference and root mean square (RMS) distance. To 
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evaluate the match of the AI and RAI results to those of the SA method, their accuracy was 

measured using IoU, DSC, HD, absolute volume difference and RMS distance.  

 

Results 

On average, SA took 1218,4s. RAI showed a significant drop (p<0.0001) in timing to 456,5s 

(2.7-fold decrease). The AI method only took 17s (71.3-fold decrease). The average intra-

operator IoU for RAI was 99,5% compared to 96,9% for SA. For inter-operator consistency, 

RAI scored an IoU of 99,6% compared to 94,6% for SA.  The AI method was always 

consistent by default. In both the intra- and inter-operator consistency assessments, RAI 

outperformed SA on all metrics indicative of better consistency. With SA as the ground 

truth, AI and RAI scored an IoU of 94.6% and 94.4%, respectively. All accuracy metrics were 

similar for AI and RAI, meaning that both methods produce 3D models that closely match 

those produced by SA.  

 

Conclusion 

A layered 3D U-Net architecture deep learning algorithm, with and without additional user 

refinements, improves time-efficiency, reduces operator error, and provides excellent 

accuracy when benchmarked against the clinical standard. 

 

Clinical significance 

Semi-automatic segmentation in CBCT imaging is time-consuming and allows user-induced 

errors. Layered convolutional neural networks using a 3D U-Net architecture allow direct 

segmentation of high-resolution CBCT images. This approach creates 3D mandibular models 

in a more time-efficient and consistent way. It is accurate when benchmarked to semi-

automatic segmentation. 

Keywords 

- Cone-beam computed tomography 

- Computer-generated 3D imaging 

- Artificial Intelligence 
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- Neural Network Models 

- Mandible 

List of abbreviations 

 

CBCT   Cone-Beam Computed Tomography 

CMF   Craniomaxillofacial 

3D    Three-dimensional 

DICOM   Digital Imaging and Communications in Medicine 

MSCT   Multi-slice Computed Tomography 

SA   Semi-automatic 

AI    Artificial Intelligence 

DL    Deep Learning 

CNN   Convolutional Neural Network 

GPU   Graphic Processing Unit 

FOV   Field of view 

STL   Standard Tessellation Language 

RAI   Refined Artificial Intelligence 

IoU   Intersection over Union 

DSC   Dice Similarity Coefficient 

HD   Hausdorff distance 

RMS   Root Mean Square 

1. Introduction 

Cone-Beam Computed Tomography (CBCT) is a well-established imaging modality of the 

head- and neck region [1]. With lower radiation dose, increased spatial resolution, seated 

position of the patient and lower machine-investment cost, CBCT became a prominent tool 

in imaging of the craniomaxillofacial (CMF) bones and the dental apparatus [1–3]. It has also 

initiated an era of virtual treatment planning [4]. This planning relies on three-dimensional 

(3D) surface models, acquired through segmentation of the exported Digital Imaging and 

Communications in Medicine (DICOM) data. Such models are imported in virtual treatment 

planning software suites and surgical treatments are simulated. To transfer the simulation 
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to the patient, the surgeon can choose to produce surgical guides or patient specific 

implants through computer-aided manufacturing methods. Surgical guides aid in 

transferring the surgical plan to the actual patient by indicating an osteotomy site or the 

correct position and angulation of a drilling sequence. They are used in oncological surgery, 

dental implant surgery and orthognathic surgery [5]. 3D surface models of CMF structures 

and the dental apparatus are also used to produce patient specific implants. These patient 

specific implants have seen a spike in their use as they offer a good fit to the existing 

anatomy of a patient without the need for extensive sculpting of the acceptor site. 

Furthermore, they are tailor-made to deliver a specific and predictable result, that is 

sometimes hard to achieve with stock implants. Patient specific implants have been 

introduced in osteosynthesis plates[6], temporomandibular joint replacement[6], custom-

made meshes for bone regeneration and bone augmentation[7,8], root analogue dental 

implants [9,10] and subperiosteal implants[11]. These applications require highly accurate 

surface models. For multi-slice CT (MSCT), this is usually achieved with thresholding and 

region growing. In CBCT data however, the intrinsic low image contrast, the lack of 

Hounsfield Units and increased noise and artifacts make this difficult, requiring substantial 

manual edits [12,13]. This current semi-automatic (SA) clinical standard is characterized by a 

high processing time and high risk of user induced error.  

 

Artificial intelligence (AI) models in image segmentation, more specifically deep learning 

(DL) algorithms, promise to overcome the aforementioned caveats [14,15]. AI has been 

defined by the American National Standard Dictionary of Information Technology as ‘the 

capability of a device to perform functions are normally associated with human intelligence 

such as reasoning, learning and self-improvement’ [16]. Machine learning is a type of AI 

technology frequently used in medical image analysis. It allows computers to learn the 

inherent statistical patterns of pairs of data (f.e. DICOM data) and annotated labels (f.e. 

Image segmentation). This type of supervised learning allows the computer to eventually 

make predictions on how a specific anatomical structure should be segmented on new 

cases[17]. DL is a subtype of machine learning which takes the computer’s autonomy even 

further by layering its algorithms in artificial neural networks, mimicking the human brain. 

By this layering, the DL networks become even more powerful[14]. Convolutional Neural 

Networks (CNN), a type of DL algorithms most commonly applied to analyze images, have 
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shown promising results in image segmentation in recent years [18]. These networks were 

already introduced in the 1980s [19,20]. However, CNNs rely on large amounts of data and 

training requires extensive computational resources, which impeded their practical 

application. Starting with AlexNet in 2012 [21], the increase in available data and surge in 

computing power has drawn much attention back to this field. In many computer vision 

applications, CNNs now outperform more classical approaches. Specifically for biomedical 

image segmentation, the U-Net architecture has beaten state-of-the-art performance in 

many applications [22]. This led to the development of many DL algorithms based on U-Net. 

For CMF CBCT scans, U-Nets have been successfully applied for the segmentation of 

different structures [23–25]. Current limitations in graphics processing unit (GPU) memory 

however limit the size of the image, making accurate direct segmentation of high-resolution 

skull images impossible, which creates difficulties for segmenting large structures, such as 

the mandible. This work proposes a novel two-step approach, in which one U-Net on a full-

size low-resolution image is combined with another U-Net segmenting high-resolution 

region of interests. 

 

The aim of this study was to develop and validate a layered deep learning algorithm that 

automatically creates 3D surface models of the human mandible from a CBCT scan. The 

hypothesis is that such an AI model could provide accurate 3D surface models of the 

mandible in a more reliable and time efficient way than the current clinical standard, being 

SA segmentation.  

 

2. Materials and methods 

2.1 Study Design 

The study design is illustrated in figure 1. As the aim was to develop and validate an AI for 

automatic mandibular segmentation, this study consisted out of a development, training, 

and testing phase. This study was performed in accordance with the Artificial intelligence in 

dental research checklist by Schwendicke et al (Supplementary material S1)[17].  

 

The development of the AI model is described in section 2.3 Model Architecture. Training of 

the model was subdivided into two stages. In the first stage, an initial training set of 30 
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preoperative scans and 50 postoperative scans was selected, the latter having higher variety 

due to the variable nature of postoperative bone healing and scattering by the 

osteosynthesis plates. These 80 DICOM-sets were imported into Mimics Innovation Suite 

(Version 21.0, Materialise NV, Leuven, Belgium) for SA segmentation. Mandibles in these 

scans were segmented using a segmentation workflow combining thresholding, region-

growing and multi-sliced edits with automatic interpolation, resulting in a standard 

tessellation language (STL) file. As the goal was to develop an AI model for mandibular 

segmentation, we chose to omit the crowns of the mandibular teeth. Each scan was 

segmented by a maxillofacial imaging expert and was checked and corrected by a second 

expert, who both were calibrated. 

 

The AI model was trained using this initial dataset. This model was afterwards deployed to 

the cloud-based platform “Virtual Patient Creator” (Relu BV, Leuven, Belgium), where users 

could upload scans and obtain an initial binary AI driven segmentation result (AI method) of 

the desired structure. Next, users could correct potential mistakes, delivering a refined AI 

driven segmentation result (RAI method). Using this workflow, 20 new scans (10 

preoperative and 10 postoperative scans) were segmented by the AI, corrected by the two 

experts, and used to retrain the AI model. The process of adding 20 new scans and refining 

the segmentation was repeated until the operators applied virtually no refinements 

anymore, in this case 4 times, leading to a total dataset of 160 scans applied iteratively to 

train the AI model. Finally, the AI model was tested on a new dataset of 15 pre- and 15 

postoperative scans.  

 
 

2.2 Data acquisition 

CBCT scans in this study were randomly selected out of a curated database of anonymized 

orthognathic surgery patients. This database consists out of high-quality full skull CBCT 

images taken for preoperative planning and postoperative follow-up of orthognathic surgery 

patients. All CBCT scans were taken with a NewTom VGi evo device (NewTom) with the 

scanning parameters: field of view (FOV) 24x19cm, voxel size 0.3mm3, 110 kV and 4.3mA. 

Scans were exported in DICOM format. No missing data was present. Ethical approval for 
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the development and use of the registry was given by the on-site ethical committee 

(B322201526790) 

 

2.3 Model Architecture 

In this work, the 3D U-Net architecture was used [22]. However, due to GPU memory 

limitations, direct segmentation of full resolution (629x816x816) scans was not possible. 

Therefore, a two-step approach was used (figure 2). A first 3D U-Net was used to provide a 

segmentation of a down-sampled image (96x96x96) of the FOV. Next, the full resolution 

image was broken down into a series of patches (96x96x96) with an overlap of 20%. Based 

on the rough segmentation, only patches containing a part of the mandible were retained 

and other patches not belonging to the mandible were filtered out. Each patch was 

subsequently segmented by another 3D U-Net. The resulting segmented patches were 

merged by summing up the logits (output of the network before the final activation) into a 

single segmentation, which, for voxels in parts with overlapping patches, represented 

weighted voting based on the confidence each patch had about that specific voxel. This two-

step approach also eliminated the problem of class imbalance, as the distribution of 

mandible and background was balanced across the patches. The image then was binarized, 

flood-filled and only the largest connected component was retained. Finally, a marching 

cubes algorithm was applied on the binary image and the resulting mesh was decimated and 

smoothed to generate a 3D surface model relevant for clinical applications. 

 

Both 3D U-Nets consisted of 4 encoder and 3 decoder blocks, each made up of 2 

convolutions followed by ReLU activation and group normalization with 8 feature maps[26]. 

The number of features after the first encoder is 64 and is doubled in each of the following 

encoders. All convolutions had a kernel size of 3x3x3, stride 1 and dilation 1. Max pooling 

was applied after each encoder with kernel size 2x2x2 and stride 2, reducing the resolution 

with a factor 2 in all dimensions. 

 

2.4 Training 

Both 3D U-nets were trained using backpropagation and weighted Binary Cross Entropy Loss 

         ∑           (  )     (    )    (    )
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with     the weight of the patch, n= the voxel, wc,n = the weight of voxel n and class c (0 

or 1),   = the ground truth and   the predicted probability of the network. The weights of 

the patches are initially 1 and each class obtained the same weight. However, visual 

inspection by the operators in the improvement step of the data acquisition showed that 

the region around the mandibular condyle was sometimes inaccurately segmented because 

of the low contrast and the proximity to the glenoid fossa. Therefore, the weight of voxels in 

these regions was increased. Both models were implemented in PyTorch and trained using 

Nvidia RTX 2080 GPUs with 11 GB VRAM. The model parameters were optimized using the 

Adam optimizer with initial learning rate 1.25e-4 which was halved 7 times during 300 

epochs. Data augmentations included random rotations, crops, scaling and elastic 

deformation, as well as input mixup [27]. A validation set containing 10% of the scans was 

used for early stopping. 

 

In the improvement stage, each time a relatively small number of scans (20 scans) was 

added to the existing set (80-140 scans). However, these 20 scans had to teach the model to 

overcome its initial bias and correct for the errors it used to make. To leverage the new 

information without losing the advantage of using the complete dataset for training, the 

weight of the patches (  ) coming from the new scans was increased compared to the old 

patches. Furthermore, the parameters of the previous version of the AI model were taken as 

initial parameters for the training, after which the model was trained as described above. To 

avoid overfitting, we used batch normalization, early stopping as mentioned earlier and data 

augmentations.  

 

2.5 Testing of the AI model 

After development and training of the CNN, it was tested on the Virtual Patient Creator 

platform where it will be used for clinical purposes. Because of the lack of a gold standard,      

timing, consistency and accuracy of the AI and RAI method for creating 3D surface models of 

the mandible were compared to the SA method, based on a test set including 30 new scans. 

To be able to compare the outcomes of the three methods, the cutting plane to remove the 

teeth of each SA model was used to create a shared cranial plane of the dentoalveolar base 
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in all 3D surface models of a specific scan. All statistical analysis were performed in SPSS 

statistics v27.0. 

 

2.5.1 Timing 

The SA method was timed from when the DICOM data was opened in Mimics until the  

STL file was produced. For the AI method, the algorithm automatically timed the seconds 

needed by the AI model to produce the full-resolution binary segmentation result. Finally, 

for the RAI method, the time required for user refinements and subsequent STL generation 

was added to the AI method. All three methods were performed by two operators on 10 

scans of the test set.  

 

2.5.2 Consistency 

Inter- and intra-operator consistency were measured for the SA and RAI methods. This was 

not evaluated for the AI method since it is by default consistent. To check inter-operator 

consistency, 10 STL files produced by the two operators were compared. To check the intra-

operator consistency, one operator performed the SA and RAI method on two time points 

with a two-week interval. The following metrics were calculated (table 1): 

- Intersection over Union (IoU) 

- Dice similarity coefficient (DSC) 

- Hausdorff distance (HD) 

- Absolute volume difference between two STL models 

- Root mean square (RMS) distance between surfaces of two STL-files 

 

2.5.3 Accuracy 

To compare the accuracy of the methods, one operator performed all methods on all 30 

scans in the test set. The STL files generated by the SA method were set as the ground truth. 

The STL files of the AI and RAI methods were compared to it using the following metrics 

(table 1): 

- IoU  

- DSC  

- HD 

                  



 

 11 

- Precision  

- Recall 

- Absolute volume difference between two STL files 

- RMS distance between surfaces of two STL files 

 

2.6 Statistical analysis 

For all metrics, descriptive statistics were calculated. A two-way repeated measure ANOVA 

was performed to test for interaction effects between the operator and the method of 

segmentation on timing of the procedure. In this last analysis, only the SA and RAI methods 

were compared since only these had operator input and STL file generation. To check if the 

inter- and intra-operator consistency were significantly different between the SA and RAI 

method, a paired-sample t-test for all metrics was performed with a significance level set at 

p=0.05. 

3.Results 

3.1 Timing 
 

Table 2 provides an overview of required timing. The SA method took on average 20 

minutes and 18 seconds. The AI model required 17 seconds on average to produce a binary 

segmentation result, a 71.3-fold decrease when compared to the SA method. When the AI 

model was combined with user refinements and STL generation (RAI method), mean timing 

increased to 456.16 seconds or 7 minutes and 36 seconds, a 2.7-fold decrease when 

compared to the SA method. Analysis of the studentized residuals showed that there was 

normality, as assessed by the Shapiro-Wilk test of normality and there were no outliers, as 

assessed by no studentized residuals greater than ± 3 standard deviations. The two-way 

repeated measures ANOVA showed no statistically significant interaction between method 

and operator on timing, F(1, 9) = 0.474, p=0.509, allowing the evaluation of the main effect 

of method (SA vs RAI)  independently from operator. This showed a statistically significant 

difference in timing between methods, F(1,9)=214.872, p<0.001. On average, RAI 

segmentation is 761,9 seconds (12.7 minutes) faster than SA segmentation (95% CI: 644.6s-

879.9s). 
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3.2 Consistency 

Table 3 provides the summarized intra- and inter-operator consistency metrics for SA and 

RAI methods. The RAI method scored an average IoU of 99,53% and 99,61% for intra-

operator and inter-operator respectively. Overall, both methods had excellent intra-

operator consistency with the RAI method outperforming the SA method on all metrics, 

indicative of better consistency. The difference in performance was significant for IoU, DSC, 

and RMS distance. Examination of the HD and absolute volumetric differences showed that 

these two metrics had a larger spread in data. Inter-operator consistency metrics were also 

excellent for both methods and the RAI method significantly outperformed the SA method 

on all metrics.  

 

3.3 Accuracy 

Table 4 shows an overview of accuracy metrics comparing the AI and RAI STL files to those 

produced by the SA method (ground truth). On average, the IoU of the AI method was 

94,6% and the RAI method scored 94,4%. Taking all metrics into account, both AI and RAI 

methods scored excellent, meaning 3D surface models produced by these methods closely 

match those produced by the SA method. The difference between AI vs SA and RAI vs SA is 

minimal. When looking at absolute volume differences (SA – AI or RAI), a bigger volume 

difference is seen in the RAI vs SA group implying that corrections mostly implied trimming 

the AI segmentation.   

4. Discussion 

3D models of CMF structures play a crucial role in diagnostics, treatment planning and 

patient communication. Historically, two main approaches for creating these models have 

been used: volume rendering and surface rendering [28]. If 3D visualization is the goal, 

volume rendering is the method of choice due to its higher accuracy when it comes to mixed 

tissue interfaces and time-efficiency [29]. However, when interaction with the 3D model is 

required, as is the case in 3D printing or virtual treatment planning, a surface mesh is 

necessary for which accurate segmentation is essential. The results of this study confirm a 

positive impact of using an AI model for automated segmentation. This model, with and 

without additional user refinements, provides an important gain in time-efficiency, reduces 

operator error, and provides excellent accuracy when it is benchmarked against SA 
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segmentation. As errors in the AI model are still possible, the Virtual Patient Creator 

platform allows corrections. If corrections where necessary, they mostly implied slight 

trimming the AI segmentation. Although this again introduces a risk of lowering consistency, 

this study showed that this risk is limited as excellent consistency metrics were observed in 

the RAI method. Regarding accuracy, both the AI as RAI method scored excellent. 

 

No papers were retrieved evaluating accuracy of DL segmentation of mandibular bone from 

CBCT data. Therefore, we compared our findings to studies focusing on the performance DL 

segmentation of the mandible from regular CT data. Egger et al. used a fully convolutional 

network (FCN-8s) for automated mandibular segmentation out of CT data and achieved an 

average DSC of 89.64% [30]. Yan et al developed a symmetric CNN, enforcing convolution 

and deconvolution computation to be symmetric to increase segmentation performance. 

They report a mean DSC of 92.02%[31]. Qiu et al. evaluated the application of CNN’s for 

mandibular segmentation, including teeth, in regular CT data [32]. They reported a mean 

DSC of 88.1% and a mean RMS distance of 0.5791mm. Tong et al. also used fully 

convolutional networks with and without a shape representation model and achieved a DSC 

of 92.07% and 93.6% respectively [33]. One recent study of Wang et al. evaluated multiclass 

CBCT image segmentation using deep learning in which simultaneous segmentation of teeth 

and jaw bones (mandible and maxilla) is combined. They reported ad DSC of 93,4% for jaw 

bones and a total segmentation time (jaw bones + teeth) of 25s[34]. The layered CNN 

approach in the current study outperforms these findings in a challenging full skull CBCT 

dataset. When compared to SA segmentation, AI method metrics were almost identical to 

those of the RAI method. Since the differences are minimal, this indicates that few 

corrections are needed in the RAI method. The increase in absolute volume difference in the 

RAI vs SA group suggests that when corrections are needed, they mostly concern trimming 

the initial AI segmentation. Finally, an increase in time-efficiency was noted. Compared to 

the SA method, the AI model showed a 71.3-fold decrease in time-consumption. When 

factoring in inspection of the results, making corrections, and producing the STL, a 2.7-fold 

decrease in time consumption was seen. Increasing the time-efficiency is one of the main 

concerns if we want these techniques to become routinely used in clinical practice.  
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Some limitations were present in the current study. As the main objective was to produce 

3D models that will be used for 3D printing and virtual treatment planning, the AI method 

does not discriminate between cortical and medullary bone. It identifies the mandibular 

shape and contour and fills up the volume. This means, apart from its orifices, the 

mandibular canal is currently not identified in the segmentation and is ‘filled out’ as are the 

other internal structures of the mandible. A next step forward would be to segment the 

mandibular canal which identifies the course of the inferior alveolar nerve. Also, the current 

AI algorithm only focused on the mandibular bone and the crowns of the teeth were not 

included. However, AI models for individual tooth segmentation in CBCT imaging are being 

developed and tested[25]. There were two main reasons for this approach. First, by limiting 

the anatomical region of the AI model, manual labeling required for model training could 

focus on a specific region, possibly reducing errors in the training data. Secondly, by 

combining different AI models (mandibular canal, mandibular bone and teeth), one can 

always have a choice in which structures need to be segmented. 

Another limitation in this study was the use of a single CBCT-machine and standardized 

scanning parameters. The data was exported out of a registry designed for orthognathic 

surgery follow-up for which standardization is great. However, this standardization 

introduces a risk for bias in training of the AI-model and the model should be strengthened 

by introducing scans from different CBCT machines with different field of views. Finally, the 

results of the accuracy assessments should be interpreted with some nuance due to the lack 

of a real golden standard, which is often the case in medical image analysis AI studies. We 

regarded the SA method as clinical standard, but on itself, it is also just an approximation of 

the mandibular anatomy. It is important to interpret the accuracy assessment as to which 

extent the AI and RAI methods produce 3D models like those derived from the SA method. 

Furthermore, 80 SA segmentations were initially used as training data for the AI model, 

carrying a certain risk of biased training data and increased accuracy scores. This was 

countered by a second training phase in which the training scans were segmented using an 

initial version of the AI model and allowing the operator to perform manual corrections.  

 

This study demonstrated a layered 3D U-Net architecture AI model which automatically 

creates a 3D surface model of the human mandible from CBCT images. Our results confirm a 

positive impact of using an AI model for automated segmentation. The AI model, with and 
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without additional user refinements, provides an important gain in time-efficiency, reduces 

operator error, and provides excellent accuracy when it is benchmarked against the current 

standard semi-automatic segmentation. As the AI model was developed and tested in a 

clinically oriented cloud-based platform, it has the advantage of being clinician-friendly. The 

AI model can be accessed and used through a web-browser and does not rely on 

computational power on the user’s side. This will facilitate its use in clinical practice. It’s true 

power lies in the creation of a complete virtual patient by combining multiple AI models that 

allow segmentation of teeth, airways, soft tissues, the mandibular canal, and other CMF 

structures. Future research should focus on this multiclass approach. When this multiclass 

automatic segmentation approach becomes available in clinical practice, it will provide a 

solid base for further improvements in virtual treatment planning and designing surgical 

guides and patient specific implants.  
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Figure and tables 
 

 

Figure 1: overview of the study design 
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Figure 2: Illustration of the layered deep learning algorithm     

 

In the first step, the full scan is downsampled to a fixed size because of GPU memory limitations and given as 
input to a first CNN to perform a low-resolution segmentation of the mandible. Using this segmentation, 3D 
patches of the full-resolution scan are extracted. In the second step, the extracted patches are fed to another 
CNN, and the segmentations are then combined to create the full-resolution segmentation map. 
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Table 1: overview of metrics used for consistency and accuracy assessment 

Metric Formula Legend 

Intersection over union (IoU)    (   )   
|   |

|   | 
   

  

         
 

This ratio represents the number of overlapping 
voxels between the volume of interest and the 
ground truth divided by their union. An IoU of 1 

is a perfect match. 
 

Dice similarity coefficient (DSC)    (   )  
  |   |

| |  | | 
   

    

           
 

This ratio also represents the overlap of voxels 
between the volume of interest and the ground 

truth over their union. A DSC of 1 is a perfect 
match. 

 

Hausdorff distance (HD) 
 

           (   )  *              (   )               (   )+ 

This is the maximum difference measured in mm 
between the ground truth and the volume of 

interest. A Hausdorff distance of 0 mm is a 
perfect match. 

Absolute volume difference 
between two STL models (absvoldif) 

ABS(ASTL1 – BSTL2) 
 

This is the absolute volumetric difference, 
measured in mm

3
 between two STL- files in 

which A the volume of STL1 and B the volume 
STL2. 

 

Root mean square  distance 
between surfaces of two STL-files 

(RMS) 
 

             ( )   √
 

 
(  
    

       
 ) 

           (  )                                               
 

This is a measure of the imperfection of the fit of 
a surface of interest to the ground truth in mm. 

An RMS distance of 0mm is a perfect match. 
 

Precision 
         (   )   

  

       
 

 

Fraction of voxels that the algorithm predicted to 
belong to the class of interest that belonged to 

that class. 
 

Recall       (   )   
  

       
 

Fraction of voxels that belonged to the class of 
interest, that the algorithm managed to predict. 

 

A = Volumetric data of operator 1, time point 1 or SA method; B = Volumetric data of operator 2, time point 2 or AI/RAI method; TP = true positives; TN = true negatives; 
FP = false positives; FN = false negatives 
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Table 2: Timing of segmentation methods 

Method  Mean (s) SD (s) Min (s) Max (s) 

SA 1218.4 (100%) 187.7 939.9 1556.3 

AI 17.1 (37,5%) 1.6 13.5 19.5 

RAI 456.5 (1,4%) 158.4 177.5 766.4 

SA: semi-automatic method, AI: artificial intelligence method, RAI: user refined artificial 
intelligence method. Percentages next to the mean indicate the relative number compared to the 
timing of the SA method. 
s: seconds, SD: standard deviation, min: minimal value, max: maximal value  
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Table 3: Consistency assessment of SA and RAI methods 

Intra-operator consistency 

  SA RAI Paired difference (RAI-SA) 

  Mean +- SD [min - max] Mean +- SD [min - max] Mean p-value 

IoU 0.9692 ± 0.0054 [0.9580 - 0.9750] 0.9953 ± 0.0027 [0.9909 - 0.9989] 0.0261 <0.00001* 

DSC 0.9844 ± 0.0028 [0.9785 - 0.9873] 0.9976 ± 0.0013 [0.9954 - 0.9994] 0.0133 <0.00001* 

HD (mm) 3.0934 ± 0.9314 [1.9209 - 4.5497] 2.5118 ± 1.1181 [1.5 - 5.1351] -0.5817 0.0914 

AbsVolDif 
(mm3) 224.6330 ± 204.1721 [36.5006 - 603.17] 100.9557 ± 129.0458 [8.507 - 436.7018] -123.6772 0.2045 

RMS 
(mm) 0.2003 ± 0.0467 [0.1500 - 0.3063] 0.1176 ± 0.0544 [0.0480 - 0.2464] -0.0826 0.0015* 

Inter-operator consistency        

  SA RAI Paired difference (RAI-SA) 

  Mean +- SD [min - max] Mean +- SD [min - max] Mean p-value 

IoU 0.9464 +- 0.0121 [0.9279 - 0.9603] 0.9961 +- 0.0021 [0.9929 - 0.9999] 0.0497 <0.001* 

DSC 0.9725 +- 0.0064 [0.9626 - 0.9797] 0.9981 +- 0.0011 [0.9964 - 0.9996] 0.0256 <0.001* 

HD (mm) 4.1337 +- 0.8209 [3 - 5.4415] 2.1533 +- 0.8173 [0.9 – 3.6125] -1.9804 <0.001* 

AbsVolDif 
(mm3) 1183.288 +- 1044.6551 [17.115 - 3325.9499] 106.3806 +- 89.24 [11.6179 - 309.7144] -1076.9075 0.011* 

RMS 
(mm) 0.4333 +- 0.1559 [0.2760 - 0.7647] 0.0382 +- 0.1493 [0.0382 – 0.1493] -0.3485 <0.001* 

SA: semi-automatic method, AI: artificial intelligence method, RAI: user refined artificial intelligence method. 
SD: standard deviation, min: minimal value, max: maximal value 
IoU: Intersection over union, DSC: Dice coefficient score, HD: Hausdorff distance, AbsVolDif: absolute volume difference, RMS: root mean square 
distance 
* Statistically significant difference between SA and RAI, p<0.05 
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Table 4: accuracy assessment of AI and RAI vs SA methods 

Metric   AI vs SA RAI vs SA 

IoU Mean  0.9459 0.9442 

  SD 0.0117 0.0113 

  St e mean 0.0021 0.0021 

  Median 0.9477 0.9457 

  5% percentile 0.9190 0.9178 

  95% percentile 0.9621 0.9595 

DSC Mean  0.9722 0.9713 

  SD 0.0062 0.0060 

  St e Mean 0.0011 0.0011 

  Median 0.9731 0.9721 

  5% percentile 0.9577 0.9571 

  95% percentile 0.9807 0.9793 

HD (mm) Mean  4.1583 4.1221 

  SD 2.8549 2.8776 

  St e mean 0.5212 0.5254 

  Median 3.0075 3.0075 

  5% percentile 1.6604 1.6604 

  95% Percentile 12.3783 12.3783 

Precision Mean  0.9519 0.9498 

  SD 0.0104 0.0100 

  St e mean 0.0019 0.0018 

  Median 0.9530 0.9514 

  5% percentile 0.9284 0.9268 

  95% percentile 0.9661 0.9642 

Recall Mean  0.9934 0.9937 

  SD 0.0031 0.0030 

  St e mean 0.0006 0.0006 

  Median 0.9936 0.9995 

  5% percentile 0.9871 0.9878 

  95% percentile 0.9977 0.9978 

AbsVolDif (mm3) Mean  2118.8582 2250.1563 

  SD 489.5242 468.8839 

  St e mean 89.3745 85.6061 

  Median 1985.9879 2138.8447 

  5% percentile 1389.1034 1497.4535 

  95% percentile 3180.3445 3248.3787 

RMS (mm) Mean  0.2634 0.2690 

  SD 0.0594 0.0562 

  St e mean 0.0108 0.0103 

  Median 0.2478 0.2617 

  5% percentile 0.1940 0.2003 
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  95% percentile 0.3909 0.3938 

SA: semi-automatic method. AI: artificial intelligence method. RAI: user refined artificial intelligence method. 
SD: standard deviation. St e Mean: standard error of the Mean 
IoU: Intersection over union. DSC: Dice coefficient score. HD: Hausdorff distance. AbsVolDif: absolute volume difference. RMS: root mean square 
distance 
 

 

                  


