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Abstract
Objectives  The aim of this review was to investigate the application of artificial intelligence (AI) in maxillofacial computer-
assisted surgical planning (CASP) workflows with the discussion of limitations and possible future directions.
Materials and methods  An in-depth search of the literature was undertaken to review articles concerned with the application 
of AI for segmentation, multimodal image registration, virtual surgical planning (VSP), and three-dimensional (3D) printing 
steps of the maxillofacial CASP workflows.
Results  The existing AI models were trained to address individual steps of CASP, and no single intelligent workflow was 
found encompassing all steps of the planning process. Segmentation of dentomaxillofacial tissue from computed tomography 
(CT)/cone-beam CT imaging was the most commonly explored area which could be applicable in a clinical setting. Never-
theless, a lack of generalizability was the main issue, as the majority of models were trained with the data derived from a 
single device and imaging protocol which might not offer similar performance when considering other devices. In relation 
to registration, VSP and 3D printing, the presence of inadequate heterogeneous data limits the automatization of these tasks.
Conclusion  The synergy between AI and CASP workflows has the potential to improve the planning precision and efficacy. 
However, there is a need for future studies with big data before the emergent technology finds application in a real clinical setting.
Clinical relevance  The implementation of AI models in maxillofacial CASP workflows could minimize a surgeon’s workload 
and increase efficiency and consistency of the planning process, meanwhile enhancing the patient-specific predictability.

Keywords  Artificial intelligence · Computer-assisted surgery · Cone-beam computed tomography · Reconstructive surgical 
procedures

Introduction

The practice of personalized, precision, or stratified medi-
cine is the individualization of evidence-based medicine, 
where a physician deviates from a traditional shotgun or 

one-size-fits-all approach towards devising more targeted 
patient-specific strategies for diagnostics, treatment plan-
ning, and preventive therapies [1]. The integration of a 
patient’s unique clinical, demographic, imaging, and epi-
demiological details into the treatment planning workflow 
has revolutionized the healthcare industry by extending the 
practice of precision beyond the conventional population-
based medicine. The population-based approach refers to an 
approach where a common treatment plan is designed having 
the ability to cure only a portion of the population, whereas 
precision medicine covers a different treatment approach 
for each patient by intelligently integrating patient-specific 
clinical, biological, and environmental data for tailored treat-
ment planning [2, 3].

The precision approach for treatment of each individual 
patient is based on 4 Ps, predictive, preventive, personal-
ized, and participatory [4]. At present, it is not possible to 
completely draw a picture of a patient’s treatment profile due 
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to the complexity of oral and maxillofacial diseases at an 
individual level and unpredictable nature of the outcomes. 
However, recent technological advancements in computer-
assisted surgical planning (CASP) approaches have facili-
tated the advancement of precision medicine by minimizing 
some of the existing constraints related to one of the 4Ps, 
i.e., personalization, for formulating patient-specific treat-
ment planning [5].

Three-dimensional (3D) CASP in oral and maxillofacial 
workflows normally encompass a combination of patient-
specific planning and three-dimensional (3D) printing. 
Nowadays, it acts as a mainstay for the customization 
and delivery of personalized care in the majority of sur-
gical workflows, such as reconstructive and orthognathic 
surgery, traumatology, TMJ surgery, and dental implant 
planning [6–11]. It allows a surgeon to three-dimension-
ally visualize, model, and print patient-specific solutions. 
CASP is mostly based on the data derived from computed 
tomography (CT)/cone-beam CT (CBCT) imaging. For 
instance, in reconstructive and orthognathic surgery, it 
helps to determine the osteotomy sites, positioning of bone 
segments, and fabrication of surgical or cutting guides and 
fixation plates [11].

The application of CASP has improved the clinical out-
comes compared to its two-dimensional (2D) counterpart, 
by offering a shorter operation time, exploration of various 
surgical alternatives, and facilitation of a cost-effective opti-
mized precise treatment [12–14]. However, its implementa-
tion is only limited to specialized hospitals, mainly owing 
to the complexity of software programs and requirement of 
experienced staff in both medical imaging and maxillofacial 
surgery [15, 16]. Furthermore, the current computational 
tools for CASP lack sufficient precision suffer from observer 
variability and are prone to extensive time consumption [16]. 
The key to overcoming the aforementioned limitations posed 
by the conventional CASP approaches could be the incor-
poration of artificial intelligence (AI)-based networks in the 
surgical workflows. In essence, AI-based on machine and 
deep learning algorithms have the ability to perform cogni-
tive functions which could minimize a surgeon’s workload 
and further enhance the practice of precision medicine in 
CASP [17].

Most of the efforts in oral and maxillofacial surgery 
have been directed towards automatizing disease diagnosis 
and outcome prognosis [18–20]. However, the augmenta-
tion of AI in CASP remains a topic of interest as it might 
become a burgeoning tool in surgical workflows for optimiz-
ing personalized treatment planning in the near future. The 
ultimate goal of AI-based treatment planning might be to 
increase efficiency and consistency of the planning process, 
meanwhile enhancing the patient-specific predictability. 
Following diagnostics, certain commonalities are shared 
between various maxillofacial CASP workflows, such as 

segmentation, multimodal image registration, virtual surgi-
cal planning (VSP), and 3D printing [21]. This review will 
focus on the evidence-based integration of AI in these steps 
of CASP for maxillofacial surgical procedures with the dis-
cussion of possible limitations and future prospects.

Segmentation

This is the first and most critical step in CASP which refers 
to the construction of 3D virtual models of dentomaxillo-
facial structures from CT/CBCT data for guiding VSP and 
designing patient-specific tools such as guides and implants 
[21]. Currently the clinical standard for segmentation is 
manual in nature, which is a time-consuming task requiring 
both anatomical and imaging expertise [22]. As time is a 
limiting factor in surgical workflows, fast segmentation is 
often required. Thereby, the alternative solution applied in 
these workflows is the application of semi-automatic seg-
mentation tools which model the specific structures based 
on specific thresholds of Hounsfield/grayscale values [23]. 
Although semi-automatic processes allow quicker segmen-
tation, they are prone to certain limitations, such as steep 
learning curve, need for excessive manual post-processing 
in the presence of high-density material artifacts, and inter-
observer variability due to a manual threshold value selec-
tion which differs for each patient and anatomical region 
depending on the bone density [24, 25]. Furthermore, the 
available commercial software packages have been opti-
mized based on CT data, which means that the accuracy 
of CBCT datasets segmentation is lower owing to the 
presence of beam hardening artifacts, inhomogeneity, and 
low-contrast resolution [26, 27]. Currently, CT devices 
are constantly being replaced with low-dose and low-cost 
CBCT devices for diagnosis and treatment planning in oral 
and maxillofacial surgery [28, 29], which could impact the 
quality of virtual models and precision of treatment plan-
ning without the availability of an optimal CBCT-derived 
segmentation software program.

Considering the limitations associated with the aforemen-
tioned traditional segmentation approaches, recent AI-based 
algorithms have been proposed to improve the performance 
of segmentation when benchmarked against manual segmen-
tation or semi-automatic approach with manual correction as 
the gold standard [30, 31]. Their performances are normally 
assessed by either applying confusion matrix based on four 
variables, i.e., true positive, true negative, false positive, 
and false negative voxels, for the voxel-vise comparison 
between the AI-based segmentation and ground truth and/or 
by surface-to-surface volumetric superimposition matching 
deviation analysis for measuring the quantitative differences 
[32–34]. The AI algorithm’s performance evaluation met-
rics usually involve recall, precision, accuracy, dice score, 
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and intersection over union [33, 35]. All these metrics have 
been shown to provide high AI algorithm’s performance 
with a score of over 90% for the CBCT-derived segmen-
tation of dentomaxillofacial structures, such as mandible, 
alveolar bone, pharyngeal airway space, teeth, and maxil-
lary sinus [33–37]. In addition, these AI algorithms showed 
no clinically or statistically significant surface deviations 
compared to manual segmentation. A direct comparison of 
AI with semi-automatic benchmark devices without manual 
correction has not been reported in literature due to the vis-
ible qualitative segmentation discrepancies shared by these 
devices due to variable patient-specific structural densities 
and non-CBCT standardized threshold levels for segmenta-
tion [21].

The AI-based methodologies have been successfully 
applied for the segmentation of CT/CBCT derived skull, 
maxilla, mandible, inferior alveolar nerve canal, pharyngeal 
airway, and teeth [33, 38–42], which could facilitate CASP 
in craniomaxillofacial surgical procedures. Similarly, AI-
based approaches have been developed for organ-at-risk and 
target segmentation in head and neck oncology [43].

The computational time for generation of a 3D segmented 
model is one the main factors why surgeons are discouraged 
from switching to planning based on digital workflows. How-
ever, AI has overcome this issue by providing accurate seg-
mentation results within a few seconds irrespective of the 
anatomical structures being segmented compared to the semi-
automatic approaches which might take up to a few minutes 
to hours depending on the structure being segmented [21]. 
For instance, expert-based mandibular bone and full denti-
tion segmentation in a scan takes an average of 20 min and 
7 h, respectively, both of which have been reduced to less 
than 30 s with the application of AI-based models [35, 36]. 
Furthermore, the need for manual post-processing is often 
encountered with semi-automatic software-based approaches 
due to the image artifacts which significantly increase the 
time for CASP [21]. Even though the presence of metal 
artifacts drastically reduces the intensity contrast of CBCT 
dataset, AI has been successfully employed for robust seg-
mentation of teeth and mandibular bone consisting of metal 
artifacts with high-performance values [44, 45]. These state-
of-the-art AI based networks have the ability to discriminate 
anatomy from metal artifacts and could offer a unique pos-
sibility of improving the CASP workflows by the elimina-
tion of inaccuracies and time constraints posed in patients 
with artifacts [44]. Nevertheless, future research needs to be 
conducted to further improve the existing AI algorithms, inte-
grate other anatomical structures, and address challenging 
cases with both motion and metal artifacts [46].

Another important aspect of segmentation is the observer 
dependency, where the final segmented structure might 
vary depending on the observer’s experience and repeat-
ability. Recently applied AI approaches for medical image 

segmentation are deterministic in nature with a predefined 
set of mathematical operations, which allows a network to 
produce an identical segmented structure from the same 
image, hence, offering 100% consistency without any inter- 
and intra-observer variability [41, 47].

Generally, the computational power of the personal 
computers in a clinical setting is not enough for running 
the AI-based networks, which requires high-performance 
computers. To overcome this problem, the technological 
advancements have allowed deployment and integration of 
the AI models onto online cloud-based platforms, which lets 
a surgeon automatically segment the required dentomaxil-
lofacial structures for planning without the need for an expe-
rienced observer or a high-performance computer [40]. Fig-
ure 1 illustrates an example of a cloud-based platform for 
the automatic segmentation of dentomaxillofacial structures.

Clinically, the production of accurate surface-rendered 
models through AI algorithms could be beneficial for sev-
eral oral and maxillofacial procedures, especially within 
the fields of dental implantology, tooth autotransplantation, 
orthognathic surgery, and navigational surgeries, where pre-
cision is of paramount importance. However, the main bar-
riers inhibiting the wide adoption of AI for segmentation in 
a clinical practice include data variability due to different 
scanning devices, acquisition parametrization, and image 
quality inconsistency with respect to contrast, resolution, 
and signal-to-noise, which lead to poor generalizability of 
the available algorithms. This generalization gap can be 
bridged by training of the AI algorithms based on a large 
variety of datasets generated from multi-center initiatives 
for improving the clinical workflows [21].

Multimodal image registration

Registration or fusion is the process of mapping two or 
more coordinate systems. In medical imaging, it refers to 
the superimposition of 3D images acquired from different 
imaging modalities into the same coordinate frame based 
on certain matching criteria [48]. Any misalignment would 
impact the CASP based on the digital model. It is performed 
to utilize the strengths and complement the weaknesses of 
different imaging modalities [49]. For instance, integration 
of MRI with CT imaging in oral oncology provides intricate 
details of both osseous and soft tissue and tumor character-
istics during planning [50].

The commonly applied registration methods are either 
extrinsic or intrinsic in nature. Extrinsic registration is per-
formed by matching invasive foreign objects which are fixed 
onto the patient during different image acquisitions, such as 
fiducial markers, miniscrews, and occlusal splints. Intrin-
sic approaches are marker-free, where similar features of 
different scans are extracted based on either anatomical or 
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mathematical landmarks, surfaces, and voxels, which are 
then matched to conduct the coordinate alignment [49]. 
Several open-source and commercial software tools are 
available in the market for performing craniomaxillofacial 
image registration. Their main limitations are excessive time 
consumption, lack of robustness depending on the extent 
of metal artifacts, and requirement of well-skilled medical 
engineers [21, 51]. Furthermore, none of the programs have 
been integrated with AI-based solutions for improving the 
efficacy of the registration process.

Multimodal image registration lies at the realm of vari-
ous CASP pathways in oral and maxillofacial surgery for 
the creation of a virtual patient, such as CBCT/intraoral 
scanner/3D photography in orthognathic surgery, dental 
implant planning, cleft lip and palate, and reconstructive 
surgery; positron emission tomography (PET)/MRI/CT for 
CASP in maxillomandibular reconstructive surgery; and 
SPECT (single photon emission computed tomography)/
CT for surgical and radiation therapy planning of oral and 
maxillofacial tumors [49, 51–56].

For an accurate depiction of dentition, CBCT combined 
with complimentary dental imaging by intraoral scanners is 
a necessity to negate the impact of distorted occlusal area by 
scattering caused by metal artifacts on CBCT images. Clini-
cally, this type of multimodal imaging is vital during planning 

for maxillofacial surgical procedures, where occlusal-surface-
supported devices such as drilling, saw, and repositioning 
guides are required [55]. Recent advent in AI has allowed 
fully automated registration of CBCT/optically scanned den-
tal models with a comparable accuracy to manual landmark-
based registration for possible application in orthognathic 
surgery and dental implant planning [56]. Chung et al. [56] 
investigated the performance of an automated AI-based reg-
istration by comparing with a manual three-point-based reg-
istration provided by experts as a ground truth. The accuracy 
was assessed by measuring the Euclidean distance errors of 
the landmarks, which showed no significant variance from the 
ground truth, and the landmark distance error was less than 
2 mm. The proposed method also outperformed other existing 
registration algorithms commonly incorporated in the soft-
ware devices by reducing the distance error by approximately 
30 to 70%. This approach might solve the limitations posed 
by the traditional approach, such as labor intensiveness and 
observer variability [21]. However, as point-based registration 
relies on ICP method, where closest point pair is used as a 
matching area to register and in cases where CBCT is con-
taminated with metal artifacts, an accurate superimposition is 
prevented due to the presence of many non-congruent points 
[57]. One possible solution in such cases could be a combi-
nation of AI-based segmentation and registration. Jang et al. 

Fig. 1   Automatic labelling, identification, and segmentation of cone-beam computed tomography-derived maxillofacial skeleton, teeth, maxil-
lary sinus, and inferior alveolar nerve canal (Relu BV, Leuven, Belgium)
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[51] trained an AI segmentation algorithm based on pano-
ramic images derived from CBCT scans which significantly 
overcame the impact of metal artifacts. Following automatic 
segmentation of teeth, the AI model automatically generated 
global-to-local tooth registration between CBCT and optical 
scan. The automated approach was compared with manual 
initial registration which showed that both landmark and sur-
face deviations of the automated registration were found to 
be within the range of 0.5 mm, whereas the manual approach 
showed deviation values of more than 1 mm. The inclusion 
of such AI-based algorithms in a daily practice could replace 
the traditional point-based method which might be able to 
offer comparable or improved accuracy, robustness, and time 
efficiency without the need of additional manual input for the 
purpose of designing surgical wafers in orthognathic surgery 
and dental implant planning [21].

Li et al. [58] proposed an end-to-end landmark-guided 
rigid registration network to register MRI/CBCT of the TMJ 
with large field of view differences, which not only solved 
the issue of FOV difference but also provided a time-efficient 
and accurate alternative to other manual and semi-automatic 
approaches. When compared with the manual ground truth, 
the automated approach showed a high performance with 
mutual information and structural similarity values of 
0.57 ± 0.07 mm and 0.06 ± 0.02 mm, respectively. In addi-
tion, the time required for registration was 0.016 s, whereas 
the manual method took > 2.0 h. This multimodal registra-
tion could provide additional information to a surgeon while 
CASP of TMJ surgeries with an accurate visualization of the 
articular disc and condyle surfaces.

Although AI algorithms have been proposed to overcome 
the taxing manual labor by automatizing the manual tasks 
associated with traditional multimodal registration tech-
niques, it is relatively in its infancy stage. The majority of 
work for the creation of a virtual patient has been based on 
automatizing registration between the CT/CBCT images and 
the optically scanned dental models [51, 56], whereas lack 
of evidence exists related to other types of image registra-
tions. At the same instance, these AI algorithms are yet to 
be deployed for CASP workflows in maxillofacial surgery.

Virtual surgical planning

The next step in CASP is known as VSP, which is usually 
performed using commercial surgical planning software 
packages [59]. The reconstructed and registered digital 
patient models are manipulated for various tasks, such as 
determination of optimal cutting planes for osteotomies, 
positioning of bony segments, exploration of different opera-
tive approaches, and soft tissue simulation. Thereafter, the 
programs allow designing of patient-specific surgical wafers, 

cutting and positioning guides, prebent plates, and implants 
[16].

Although VSP for maxillofacial procedures has been 
employed for more than 35 years with indisputable advan-
tages over traditional 2D planning [60], its implementation 
is still limited to specialized hospitals mainly owing to the 
complexity of software programs requiring well-trained 
technicians and steep learning curve [15]. Additionally, the 
contested inaccuracy of VSP versus actual surgical outcome 
in orthognathic and plastic and reconstructive surgery has 
also been well documented which can negatively impact 
the precision of treatment delivery [8, 61]. Accuracy is an 
important aspect of VSP as it determines the success of a 
surgical procedure and patient satisfaction.

Until now, both AI-based machine and deep learning 
frameworks have mainly been employed for improving the 
accuracy of virtual soft-tissue simulation in the VSP path-
way of orthognathic surgery [16, 62]. These algorithms 
have been trained with 3D face scans of healthy volunteers 
and orthognathic surgery patients, which allows automatic 
simulation of the required postoperative change in facial soft 
tissue. Hence, the planning step is reduced to only a single 
step, i.e., the necessary amount and direction of bone move-
ment to achieve the simulated soft tissue position. Knoops 
et al. [16] reported that their machine learning framework 
was able to diagnose orthognathic shape features with 95.5% 
sensitivity and 95.2% specificity. In addition, their auto-
mated postoperative face shape simulation compared to the 
ground-truth postoperative shape was able to offer a mean 
accuracy of 1.1 ± 0.3 mm, which is comparable to the tradi-
tional software packages offering simulation accuracy within 
the range of 0.5 to 2 mm. In another study, Horst et al. [62] 
developed an AI-based method for simulating soft-tissue 
profiles following mandibular advancement surgery. They 
generated the soft tissue simulations with AI and also with 
Mass Tensor Model (MTM) algorithm, which is one of the 
most commonly employed and accurate algorithms in sur-
gical planning software programs. Later, both simulations 
were compared with the actual postoperative soft tissue pro-
file. The findings suggested that the AI approach provided 
with a significantly lower error (1.0 ± 0.6 mm) compared to 
the MTM-based simulation (1.5 ± 0.5 mm), hence, confirm-
ing the clinical applicability of these AI approaches which 
could further facilitate in making the surgical planning more 
precise, objective, and cost-effective.

In reconstructive and cleft lip and/or palate surgery [63, 
64], AI-based recognition of the facial skeleton midplane has 
been proposed which is a vital step for pre-surgical planning 
of deformed or traumatized tissue and implant design tech-
niques. Although optimal performance has been reported for 
obtaining a midplane of symmetric skull with a DSC score 
of around 99% compared to manual ground truth labels, 
there is still a need to improve its performance for deformed 
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or asymmetric images before it can be utilized for clinical 
applications [64]. In head and neck oncology, AI algorithms 
have been developed for intensity modulated radiotherapy 
(IMRT) and adaptive radiotherapy planning within the VSP 
chain to reduce the clinical strain and improve the dosimetric 
integrity [43, 65], which is normally a labor-intensive and 
time-consuming process requiring many iterations between 
experienced oncologists and dosimetrist. However, these 
solutions are still at their early developmental stage, and 
an improvement in their performance is necessary before 
widespread deployment.

In dental implant planning, AI-based algorithms have 
been mainly applied for guiding the decision-making process 
for formulating a plan on the need for implant placement 
with/without bone graft, type and design of prosthesis (fixed 
or removable), implant abutment selection, and selection of 
the optimum implant length and design [66–69]. However, 
only a few studies have focused towards the VSP aspect, 
where these algorithms have been proposed for automati-
cally calculating bone dimensions and localizing the posi-
tion of prospective dental implant placement sites on CBCT 
images [70, 71]. The performance of these algorithms is still 
below par compared to the manual ground truth, and further 
refinements are required before their implementation in a 
clinical practice.

Generally, the training and accuracy of AI-based net-
works rely on big data, which also holds true for VSP [21]. 
Even though recent development of automated AI tools for 
VSP in orthognathic surgery has the tendency to improve the 
clinical decision-making process to a certain level, there is 
still room for improvement. Future studies are required for a 
potential integration of dental, skeletal, and soft tissue into 
a single model using a large patient cohort and inclusion of 
diverse maxillofacial surgical procedures. Furthermore, the 
combination of these virtual models with electronic medical 
records might possibly pave the way towards a new horizon 
of precision medicine.

3D manufacturing

The final step in CASP workflow is the translation of a spe-
cific virtual design to a physical product by 3D printing. 
It involves three major steps: (a) modeling, generation of 
virtual blueprints of a model to be printed with computer-
aided designing (CAD); (b) printing, physical fabrication 
of the model with layered deposition of a material; and (c) 
finishing, post-processing, and cleaning to achieve the final 
model [72]. 3D printing is often required for CASP where 
patient-specific tools are needed during a procedure, such 
as surgical wafers, cutting and positioning guides, pros-
thesis, implants, and anatomical models for adjustment of 
plates or titanium mesh [73]. Traditionally, the designing is 

performed using either commercial software packages which 
are financially expensive and license driven or open-source 
programs whose application is limited due to lack of CE cer-
tification for medical applications. Furthermore, other key 
issues pertain to the availability of experts for modeling, 
cost, and manufacturing time [74].

In that context, AI has already laid a foundation towards 
automatization of the printing process in craniomaxillofa-
cial surgery by converting traditional 3D printing to intel-
ligent manufacturing. For instance, AI-based platforms have 
already been proposed to automatically design patient-spe-
cific cranial implants for skull defect repair following cranio-
plasty [74, 75]. This might solve the issue of automatically 
producing 3D printable and directly implantable shapes. 
Additionally, AI-based algorithms have also been proposed 
for reproducing the color of maxillofacial prostheses to that 
of natural skin by automatic selection of required pigments 
volume, which has the ability to overcome the expensive 
and non-efficient color-matching systems for prosthesis fab-
rication in cases of maxillofacial defects [76]. At the same 
instance, application of intelligent manufacturing in other 
fields of maxillofacial surgery is limited.

Although AI has been proposed for in vitro optimization 
of the printing parameters [77], the incorporation of these 
algorithms in the field of surgery still needs to be investi-
gated for automatic optimal selection of material and tech-
nical parameters for printing patient-specific tools. So far, 
AI has stepped in the designing and printing steps of the 
workflow; however, post-processing still requires human 
intervention. Therefore, at present it is impossible to use AI 
for controlling the complete 3D printing process.

Conclusions and future perspectives

The integration of AI in oral and maxillofacial surgery 
has shown great potential for screening, diagnostics, and 
treatment outcome prediction. However, when considering 
precision of treatment planning, the synergy between AI 
and CASP workflows is still below par. It is worth noting 
that the augmentation of AI in the healthcare industry has 
been booming for the past few years; however, the level of 
evidence for treatment planning in oral and maxillofacial 
surgery is still limited. Most of the AI algorithms have been 
trained to address individual steps of CASP, and no single 
intelligent workflow exists encompassing all aspects of the 
planning workflow. Segmentation of dentomaxillofacial tis-
sue has been the most explored area which has been con-
sidered satisfactory for clinical use. Nevertheless, a lack of 
generalizability is the main issue posed by these algorithms, 
as the majority of models have been trained with the data 
derived from a single device and imaging protocol which 
might not offer similar performance when considering other 
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devices. In relation to the later steps of CASP, such as regis-
tration, VSP, and 3D printing, a lack of adequate heterogene-
ous data limits the integration of AI for automatizing these 
tasks to be used in a clinical practice. Table 1 summarizes 
the general limitations associated with conventional CASP 
and possible advantages of integrating AI into the work-
flows. Furthermore, certain future recommendations are 
proposed below to improve the possible direction of AI for 
future research:

•	 Big data is one of the fundamental obstacles for the inte-
gration of AI models in oral and maxillofacial CASP. 
Efforts should be made to employ big data provision by 
developing cloud-based databases acquired from multiple 
centers with different settings and level of artifacts to 
improve the generalizability of models, with the ultimate 
goal of improving the precision of planning in patients 
with rare and complicated diseases.

•	 Demonstration of the safety and efficacy of the AI models 
for ensuring that all required regulatory conditions are 
sufficiently met. At present, models lack standardization, 
CE certification, and medical device regulation (MDR) 
compliance. Furthermore, cost–benefit ratio and cost-
effectiveness of AI needs to be established.

•	 Requirement of comparative studies assessing the accu-
racy of integrated 3D models to ensure high performance 
of the AI algorithms compared to the status quo bench-
mark software programs.

•	 At present, the majority of studies exemplify their mod-
els’ performance based on private datasets which is 

inconvenient for benchmarking if future growth is to be 
expected. A possible solution could be deployment of 
the AI models in the form of commercial or open-source 
software packages for benchmarking their performance 
against other models and validating their clinical appli-
cability. In addition, it is also important to benchmark the 
performance of different AI algorithms for similar tasks.

•	 AI-based multimodal image registration especially 
CBCT/IOS/facial scanning for the creation of a virtual 
patient is a novel area for research with limited avail-
able evidence and has plenty of clinical implications 
in the workflows of plastic, reconstructive and orthog-
nathic surgery, dental implant planning, and traumatol-
ogy, which needs to be further explored on the road for 
achieving an AI virtual model. For future AI-based reg-
istration studies, it is important to address the issues of 
ground-truth data generation and to define a clear simi-
larity criterion between two or more imaging modalities 
for optimal registration. Furthermore, it is also crucial 
to test the robustness of these algorithms in the presence 
of metal artifacts which is still considered a challenging 
task for automatizing the image matching process.

•	 Automatization of the 3D printing process should 
focus towards devising methods for auto-designing of 
patient-specific wafers, cutting and positioning guides, 
and implants. This could be achieved by incorporating 
AI-based algorithms which have the ability to learn the 
shape deviations from past printing jobs. At the same 
instance, printing parameters should be automatized 
such as material selection, layer resolution, and design 

Table 1   General limitations of conventional computer-assisted surgical planning (CASP) and possible advantages of integrating of artificial 
intelligence (AI)-based networks into the workflows

Conventional CASP limitations Possible advantages of AI integration

Segmentation ‒ Observer variability and labor intensiveness
‒ Steep learning curve
‒ Need for manual post-processing
‒ Lacks robustness in the presence of artifacts
‒ Requires computers with high computational 

power

‒ Time-efficiency
‒ Observer and experience independence
‒ Improved performance against artifacts
‒ No need for post-processing
‒ Deploying onto cloud-based platforms overcomes 

the need for high-performance computer
Multimodal image registration ‒ Lacks robustness in the presence of artifacts

‒ Labor intensiveness
‒ Automatic registration without the need for manual 

input
‒ Exclusion of artifacts from surfaces being regis-

tered
Virtual surgical planning ‒ Observer variability and labor intensiveness

‒ Reduced accuracy compared to actual surgical 
outcome

‒ Automatic determination of optimal cutting planes 
for osteotomies, placement of surgical guides and 
implants, positioning of bony segments, and treat-
ment simulation

Three-dimensional manufacturing ‒ High modeling cost and manufacturing time
‒ Requirement of a modeling expert
‒ Manual selection of printing parameters
‒ Manual post-processing

‒ AI-based modeling by training algorithm from past 
printing jobs

‒ Automatic selection of the printing parameters 
based on object to be printed

‒ Robotic post-processing to remove the possibility 
of human error



	 Clinical Oral Investigations

1 3

orientation depending on the structure being printed, for 
overcoming the steep learning curve which could ensure 
universal applicability of 3D printers without the require-
ment of a trained professional.
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