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A B S T R A C T   

Objectives: The objective of this study is the development and validation of a novel artificial intelligence driven 
tool for fast and accurate mandibular canal segmentation on cone beam computed tomography (CBCT). 
Methods: A total of 235 CBCT scans from dentate subjects needing oral surgery were used in this study, allowing 
for development, training and validation of a deep learning algorithm for automated mandibular canal (MC) 
segmentation on CBCT. Shape, diameter and direction of the MC were adjusted on all CBCT slices using a voxel- 
wise approach. Validation was then performed on a random set of 30 CBCTs - previously unseen by the algorithm 
- where voxel-level annotations allowed for assessment of all MC segmentations. 
Results: Primary results show successful implementation of the AI algorithm for segmentation of the MC with a 
mean IoU of 0.636 (± 0.081), a median IoU of 0.639 (± 0.081), a mean Dice Similarity Coefficient of 0.774 (±
0.062). Precision, recall and accuracy had mean values of 0.782 (± 0.121), 0.792 (± 0.108) and 0.99 (±
7.64×10− 05) respectively. The total time for automated AI segmentation was 21.26 s (±2.79), which is 107 times 
faster than accurate manual segmentation. 
Conclusions: This study demonstrates a novel, fast and accurate AI-driven module for MC segmentation on CBCT. 
Clinical Significance: Given the importance of adequate pre-operative mandibular canal assessment, Artificial 
Intelligence could help relieve practitioners from the delicate and time-consuming task of manually tracing and 
segmenting this structure, helping prevent per- and post-operative neurovascular complications.   

1. Introduction 

The last two decades have seen a shift towards full digital workflows 
for pretreatment diagnostics, treatment planning and follow-up [1,2]. In 
this regard, Cone Beam Computed Tomography (CBCT) has gained a 
prominent position in this workflow, considering the low costs and 
compact size of such machines, meanwhile providing essential 3D 
anatomical details with high spatial resolution and low radiation dose 
[2,3]. CBCT allows visualization of critical anatomical structures, such 
as the mandibular canal (MC), housing the vital mandibular neuro
vascular bundle [4,5]. Knowledge of the exact position of the MC and its 
relation to adjacent structures is crucial to help avoiding mild to severe 
life-altering conditions [4–6] during implant placement [4,5], sagittal 

split osteotomy [4,7], cyst removal [4,8] and tooth extraction [4,5,7,9]. 
Such injuries are relatively common (incidence from 0.2 to 8.4%) [9, 
10], and could lead to (semi)-permanent paresthesia, anesthesia or 
dysesthesia of the innervated structures of the affected side (such as lip, 
jaw, teeth, tongue, mucosa, gingiva) [4,8]. Iatrogenic trigeminal dam
age could also significantly impact quality of life, lifestyle and psycho
social outcomes [11]. 

Accurate pre-operative assessment of the MC and any potential 
anatomical variation of this structure is thus crucial to avoid post- 
operative complications and damage to the inferior alveolar nerve [4, 
7]. Yet, precise and automatic delineation of the MC remains chal
lenging. Several CBCT-guided planning software tools allow for visual
ization of the MC after manual placement of marks at different locations 
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across the canal’s path with interpolation into a fixed diameter cylinder, 
providing a virtual depiction the MC, denoted as MC tracing. 

Nevertheless, this approach yields certain inherent inaccuracies 
given the fully manual nature of the tracing [12,13], coupled with the 
inherent limitations of CBCTs in terms of low image contrast, increased 
noise, artefacts and the lack of Hounsfield units. All of this adds to the 
complexity of achieving - manually or automatically – an accurate 
assessment of this structure [3,14]. 

For these reasons, the introduction of Convolutional Neural Net
works (CNNs) and Artificial Intelligence (AI) in medical imaging seg
mentation tasks has been seen as an apparent solution for countering 
such problems: CNNs, which are at the core of AI technologies, are 
computational processing systems heavily inspired by how the occipital 
cortex operates. They are comprised of neurons that self-optimize 
through learning, consisting of an input and an output layer, with 
multiple hidden layers in between. They are primarily used in the field 
of patterns recognition within images [15]. 

CNNs and AI have proven to counter various limitations previously 
met with manual and automatic segmentation methods [16–18], which 
could in our case allow for accurate automated segmentation of the MC, 
in spite of localized morphological variations such as bifid canals and 
localized canal enlargement, assisting clinicians in accurate presurgical 
MC assessment; thus lowering the risk of per-and postoperative 
complications. 

Therefore, the aim of this study is twofold: 1. development and 
validation of a novel tool for accurate voxel-wise segmentations, capable 
of adjusting to variations in MC shape and width MC; 2. training and 
automation of such a tool for fast and accurate result generation. The 
hypothesis is that such AI-driven tool might provide MC segmentations 
for clinical use, that are much faster and at least as accurate as the ex
pert’s segmentations. 

2. Materials and Methods 

2.1. Data acquisition and training database 

A random collection of CBCT scans from the M3BE database (Ethical 
Committee Research UZ/KU Leuven B322201525552) was initially 
gathered, yielding a total of 235 CBCT scans from dentate patients 
needing oral surgical procedures (mean age 25±11 years old). Scans 
were acquired using the 3D Accuitomo 170 (Morita, Kyoto, Japan), 
ProMax 3D MAX (Planmeca, Helsinki, Finland), Scanora 3Dx (Soredex, 
Tuusula, Finland) and NewTom VGI EVO (QR Verona, Cefla, Verona, 
Italy) devices (Table 1). An initial anonymization of the image dataset 
was subsequently performed. 

The initially collected dataset was divided as follow: 166 cases for 
training (70.64%), 39 cases for testing (16.59%) and 30 cases for final 
validation of the algorithm (12.77%). All three subsets included a 
random distribution of CBCT scans from the four scanning devices, 
having various acquisition parameters and degrees of artefacts. 

The testing dataset allowed to test several CNNs and opt for the one 
that showed the best results for the various parameters, such as speed 
and accuracy [19]. 

Next, the chosen CNNs were trained using a large number of cases 
(training dataset). To tackle maximum variability and increase robust
ness of the algorithm, included CBCTs relied on a variety of field of view 
(FOV) dimensions, various voxel sizes, presence of different types of 
artefacts in the scans, low- and high-resolution images, many levels of 
scattering and different degrees of mandibular canal cortication. The 
trained model was finally tested for validation using a set of unseen cases 
by the algorithm – being the validation dataset. 

As for the training of the algorithm, 40 random CBCT scans were 
initially imported into Romexis® version 5.2.1.R (Planmeca, Helsinki, 
Finland) for tracing of the MC – going from the mandibular foramen 
until the mental foramen – using the built-in tool in Romexis® for nerve 
annotation (Fig. 1.A). The MC tracings were performed and verified by 

two experts in dentomaxillofacial radiology. The tool required the user 
to specify control points for the canal, followed by an automated 
interpolation of the pathway of the MC, based on the control points [20]. 
A uniform cylinder of 2.50 mm was then fixed to simulate the width of 
the mandibular canal [21] (Fig. 1.B). This initial training set allowed for 
the development of an initial version of a Deep Learning (DL) algorithm, 
Virtual Patient Creator (Relu BV, Leuven, Belgium), capable of per
forming accurate voxel-wise MC segmentations. 126 new random CBCT 
scans were then imported into the DL tool (Fig 1.C), where two experts 
in dentomaxillofacial radiology accurately segmented the limits of the 
MC on cross-sectional slices, with a voxel-wise segmentation approach 
(Fig. 1.D). 

The performed segmentations were double checked jointly by the 
experts and adjustments were made when deemed necessary. Segmen
tations were then used to train and refine the DL algorithm and allow for 
the development of a refined and robust algorithm (Fig. 1.E). 

2.2. Dataset pre-processing and augmentation 

Various types of data augmentation strategies were applied to arti
ficially increase the dataset and improve on generalizability and 
robustness of the model (Fig. 1.B, D). These strategies included affine 
transformations such as scaling, rotation, shear, mirroring, translation, 
elastic deformations and random cropping. These techniques were 
randomly applied during the training phase. 

2.3. Network architecture of the convnet 

In this study, two CNNs worked together in order to produce a full- 
resolution segmentation output. The first CNN performed a coarse seg
mentation of the MC, while the second CNN performed in turn a fine 
segmentation on the region around the coarse segmentation. 

Based on the test set – which is used to optimize the network ar
chitecture by minimizing the error on this dataset [22] – the architecture 
used for MC segmentation was a 3D U-Net [17,23]. The U-Net is an 
encoder-decoder fully convolutional network with skip connections, 
that has been successfully applied in various medical segmentation 

Table 1 
Acquisition devices and parameters of the study’s database.  

CBCT Device Voxel Size 
µm 

Field of View (FOV)   mm x 
mm 

Number of 
Cases 

NewTom VGI 
evo 

100 80 x 80 4 

NewTom VGI 
evo 

125 120 x 80 7 

NewTom VGI 
evo 

150 80 x 80 5 

NewTom VGI 
evo 

150 120 x 80 4 

NewTom VGI 
evo 

200 120 x 80 61 

NewTom VGI 
evo 

200 100 x 100 26 

NewTom VGI 
evo 

250 150 x 120 24 

NewTom VGI 
evo 

300 240 x 190 51 

NewTom VGI 
evo 

300 160 x 160 3 

ProMax 3D MAX 250 130 x 90 5 
ProMax 3D MAX 400 230 x 260 7 
ProMax 3D MAX 200 130 x 130 5 
Accuitomo 170 250 140 x 165 16 
Accuitomo 170 200 140 x 100 7 
Accuitomo 170 125 100 x 100 5 
Scanora 3Dx 160 140 x 100 2 
Scanora 3Dx 250 170 x 120 3    

235  
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problems. The encoder extracted the interesting features from the input 
image using convolutions, rectified linear unit (ReLU) operation and 
max pooling. The images were then down-sampled, resulting in a final 
feature map containing global information about the image. The 
decoder used is symmetric to the encoder and helps generate a dense 
segmentation mask of the input. 

To improve localization of the network, skip connections were added 
to combine the feature maps from the decoder with the ones of the 
encoder. A semantic segmentation branch subsequently combined the 
feature maps from all the layers of the decoder into one single output. 
Feature maps were up-sampled to the same size using convolutions, 
group norm, ReLU and bilinear up-sampling – and then combined using 
element-wise summing. The model was trained on full resolution 
patches with Binary Cross Entropy loss and early stopping (Fig. 2). 

2.4. AI driven MC segmentation 

A 3D U-Net CNN [23], trained with the above described dataset was 

developed for automated detection and segmentation of the MC. The 
tool relied on automatically detecting the path of the MC using a 
voxel-wise probability approach. 

Moreover, the possibility of user interaction was preserved with the 
ability to modify the path of the canal as well as its shape and width. 
Over- and under-estimations could therefore be adjusted, if deemed 
necessary by the operator. 

2.5. Validation dataset 

AI study validation relied on 30 randomly selected CBCT scans, 
where AI-driven segmentation of the MC was performed (Fig. 3). 

Results were saved as Digital Imaging and Communications in 
Medicine (DICOM) files and as Standard Tessellation Language file 
(STL). Expert manual segmentations were then conducted, allowing for 
further objective accuracy assessment between AI-driven versus expert 
manual MC segmentations. 

Fig. 1. Workflow of the methodology used for the development and training of an AI-driven algorithm for mandibular canal segmentation on CBCT.  

Fig. 2. Workflow of the 3D U-Net Convolutional Neural Network.  
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2.6. Assessment and validation of the algorithm 

Voxel-level annotations were performed on the validation set to 
assess the accuracy and performance of the AI-driven segmentations. 
Firstly, the intersection-over-union (IoU) score was assessed: IoU is a 
standard performance measure for the object category segmentation 
problem. For a given object, the IoU measures the similarity between the 
predicted object and its ground-truth counterpart. It is defined by the 
following equation: 

IoU =
TP

FP + TP + FN
(1)  

where, TP, FP, and FN denote the true positive, false positive and false 
negative pixel counts, respectively [24]. The area of overlap between 
expert-user and AI-algorithm results is where the algorithm identifies 
which voxels exactly match the annotated ground truth segmentation. 
These voxels are known as TP. The voxels erroneously segmented by the 
CNN are known as FP and the pixels that the CNN failed to segment are 
known as FN. 

Furthermore, the Dice Similarity Coefficient (DSC), which relates to 

Fig. 3. 3-Dimentional simulation of an AI-driven mandibular canal segmentation on CBCT, where the proximity between the mandibular canal and third molar can 
be visualized and assessed preoperatively (A), as well as its relation with all dental structures in the mandible (B). 
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the amount of intersection between two segmented objects [16,24], is 
defined by the following equation: 

DSC =
2 × TP

(TP + FP) + (TP + FN)
(2) 

Hausdorff Distance (HD) was used as an indicator of the largest 
segmentation error [25]. HD indicates the longest distance given from a 
point in the first segmented entity (manual expert segmentation) to its 
closest point in the other entity (AI-computed segmentation. HD is 
therefore computed between boundaries of the AI-computed and 
ground-truth segmentations, which consist of curves in 2D and surfaces 
in 3D [25,26]. HD is defined by: 

HD(A,B) = max[hd(A,B), hd(B,A)]

Where the function hd(A, B) is referred to as the directed Hausdorff 
distance from A to B. It ranks each point of A according to its distance to 
the nearest point of B. The largest of these distances determines the 
value of hd(A, B) [26]. 

The precision and recall measures characterize the agreement be
tween the oriented boundary edge elements of region boundaries of two 
segmentations [27]. They are therefore calculated based on overlapping 
regions. Two aspects related to overlapping regions are stated prior to 
experimentation: the matching direction and the corresponding criteria. 
The matching direction for the precision measure is defined as a 
reference-to-segment directional correspondence [28]. Precision and 
recall measures relate to the following equations: 

Precision =
TP

TP + FP  

Recall =
TP

TP + FN 

Accuracy is a weighted arithmetic mean which explicitly takes into 
account the classification of negatives, and is expressible both as a 
weighted average of Precision and Inverse Precision and as a weighted 
average of Recall and Inverse Recall [29]. It is defined as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN 

Time was also recorded by from the moment the algorithm received 
the DICOM of the scan, until a segmentation map was outputted. 

2.7. Part comparison analysis of MC segmentation versus tracing 

In order to further elaborate on the advantages of the development of 
a MC segmentation tool as opposed to MC tracing – where a fixed 
diameter is used to simulate the whole path of the neuro- 
vascularization, a part comparison analysis was performed based on 
the two methods: For the AI-driven automatic MC segmentation method, 
the DICOM files were imported into the cloud-based tool, where the AI- 
driven algorithm yielded stereolithography (STL) files of the segmented 
MC. The same DICOM files were then loaded into Romexis® version 
5.2.1.R, where accurate manual MC tracing was performed, relying on a 
2.5 mm fixed diameter and a 2.0 mm slice thickness between the 
different points of the tracing. After export, STLs were imported into 3- 
Matic (materialise, Leuven, Belgium), where a signed part comparison 
analysis (PCA) was performed. 

PCA allows to calculate the volumetric deviation between two 
structures: in this case between AI-driven segmentations and manual MC 

Fig. 4. 3-Dimentional part comparison analysis (B) between mandibular canal segmentations (A) and mandibular canal tracing (C). Lateral (D, F), frontal (E) and 
inferio-superior (G) views of the part comparison analysis highlight areas of deviation between the two scenarios, due to local variation of the width of the 
mandibular canal, inferior or superior to 2.5 mm. 
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tracing (Fig. 4). 

3. Results 

Results of IoU, DSC, Precision, Recall, Accuracy and HD can be found 
in Table 2. The mean IoU of the 30 cases was 0.636 (± 0.081), the 
median IoU 0.639 (± 0.081), the mean DSC was 0.782 (±0.062). HD had 
a mean value of 0.705 mm (±0.389), while Precision, Recall and Ac
curacy had mean values of 0.782 (±0.121), 0.792 (±0.108) and 0.99 
(±9.52 × 10− 05) respectively Total time from uploading until result 
visualization was 21.26 s (±2.79), while the average time for expert 
manual segmentation was 37.9 min (± 9.11). 

Furthermore, a part comparison analysis from the registration of the 
AI-driven MC segmentation on the expert manual segmentations shows 
high agreement between the two methods at the level of first and second 
molars, as well as at the distal level of the second molar, mesial to the 
first molar and at the at the level of the mandibular foramen, with a 
mean deviation of 0.382 mm (±0.860) between AI-driven automated 
segmentations and manual tracing of the MC (Fig. 4). 

4. Discussion 

Accurate MC assessment for procedures similar to tooth extraction, 
implant placement, bone grafting and orthognathic surgeries have 
proven to be of high clinical relevance [13,20,30]. Assessing structures 
using imaging modalities, such as CBCTs can be done through 
segmentation. 

However, limitations of conventional segmentation techniques for 
surgical assessment in both the medical and dental fields have led in the 
last few years to a surge in DL technologies for classification and seg
mentation purposes [31,32]. CNNs have shown great potential in 

generating accurate results, given their capabilities of learning from 
contextual information within image slices of complex 3D anatomical 
structures [33]. Nowadays, CNNs have proven to outperform conven
tional approaches in many computer-vision and image segmentation 
tasks [23,31,32]. While current limitations were mainly centered 
around GPU and hardware technicalities, current progresses - as is the 
case in this study - allow to run DL algorithms on the cloud, relieving 
clinicians and researchers from having to invest and maintain complex 
and expensive hardware equipment. 

This study reports on development and validation of a novel tool for 
MC segmentation based on DL and AI technologies. In this study, the 
algorithm successfully detected the presence of the MC bilaterally on all 
CBCTs. Despite the heterogeneity of the dataset used in terms of CBCT 
devices, FOVs, voxel sizes, presence of artefacts and the various degrees 
of cortication of the MC, a high level of accuracy was achieved by the 
algorithm, with only one case from the validation subset displaying an 
IoU < 0.5 (supplemental Fig. 1). 

Regarding accuracy metrics, it must be stated that the IoU penalizes 
slight shifts in overlap quite heavily, with a good overlap having an IoU 
> 0.60 (DSC > 0.75) [34]. 

Kwak et al. in [30] tested several CNNs for mandibular canal 
detection and obtained a mean IoU of 0.577 using a 3D U-Net. Their 
study however shows a lack of variability in the acquisition parameters 
of the training set, whereas all CBCT scans were acquired using the same 
device, with relatively similar acquisition parameters. This issue was 
tackled in the present study, where variability was greatly introduced in 
the training, testing and validation datasets, as well as by the used of 
data augmentation strategies, which resulted in a highly robust algo
rithm with an increased generalizability and performance of the model. 
As for the study published by Jaskari et al. in [20], results showed a 
mean DSC of 0.570, well below the acceptable DSC score of 0.75 [34]. 

With a DSC score of 0.774 (± 0.061), this study relates to the first AI- 
driven tool for MC segmentation to pass the barrier of clinically 
acceptable accuracy and allows for its potential use in surgical planning 
scenarios. 

To achieve such results, accurate manual segmentations took expert 
operators on average 37.9 (± 9.11) minutes per CBCT. Presently, AI- 
driven automated segmentations of the MC take on average 21.26 s 
(±2.79) – 107 times faster than accurate expert-manual segmentation of 
this bilateral structure. 

It is also important to mention that the state-of-the-art approach used 
in this study relies on accurate MC segmentation as opposed to MC 
tracing – the latter being the current standard for both manual and 
automated approaches. MC segmentation allows for more accurate re
sults and the ability to detect and adapt to morphological variations, 
such as localized canal enlargement and bifid canals. 

While a part comparison analysis further confirmed the high agree
ment in terms of accuracy between MC tracing and MC segmentation 
(mean deviation of 0.38 mm (±0.86)), it interestingly illustrated that 
most deviations happened at the level of the third molar and between 
first and second premolars. In this context, it is clinically very relevant to 
highlight that AI-driven segmentations seemed to better adjust in cases 
where a lack of clear cortication of the MC was observed and in cases of 
proximity between the roots of the mandibular third molar and the MC 
when compared to other MC tracing modalities [20]. To further tackle 
this issue during training, the radiologists cross-checked manual seg
mentations until reaching a consensus regarding the path of the 
mandibular canal, before feeding the data to the deep learning algo
rithm. This allowed to limit potential errors in the training dataset and 
improve the performance of the algorithm, given that those regions 
remain of utmost importance for both oral and maxillofacial surgeries, 
where small anatomical variations might cause mild to severe per- and 
postoperative complications [4–6] (see also Figs. 3-4). 

Blind to the device or acquisition parameters used – the algorithm 
seemed to perform best on CBCTs, where a higher degree of cortication 
was observed; from which the algorithm could accurately detect the 

Table 2 
Results of the intersection-over-union (IoU), Dice Similarity Coefficient (DSC), 
Precision, Recall, Accuracy and Hausdorff distance (HD) (mm) measures are 
presented for all 30 CBCT scans of the validation dataset. The mean and standard 
deviation (SD) of the results are shown in the last two rows.   

IoU DSC Precision Recall Accuracy HD 

1 0.716 0.835 0.834 0.835 0.999 0.559 
2 0.785 0.880 0.915 0.846 0.999 0.346 
3 0.652 0.789 0.916 0.694 0.999 0.600 
4 0.688 0.815 0.750 0.892 0.999 0.400 
5 0.672 0.804 0.719 0.912 0.999 0.447 
6 0.698 0.822 0.888 0.765 0.999 0.400 
7 0.504 0.670 0.577 0.799 0.999 1.095 
8 0.695 0.820 0.709 0.972 0.999 0.400 
9 0.637 0.778 0.923 0.673 0.999 0.559 
10 0.449 0.620 0.708 0.551 0.999 2.163 
11 0.634 0.776 0.788 0.765 0.999 0.600 
12 0.519 0.683 0.549 0.906 0.999 1.637 
13 0.547 0.707 0.852 0.605 0.999 0.938 
14 0.630 0.773 0.732 0.818 0.999 0.632 
15 0.640 0.781 0.889 0.696 0.999 0.600 
16 0.780 0.876 0.915 0.841 0.999 0.490 
17 0.595 0.746 0.600 0.987 0.999 0.490 
18 0.513 0.678 0.545 0.896 0.999 0.825 
19 0.546 0.706 0.579 0.906 0.999 1.020 
20 0.589 0.741 0.757 0.727 0.999 0.938 
21 0.664 0.798 0.814 0.783 0.999 0.500 
22 0.698 0.822 0.828 0.816 0.999 0.490 
23 0.626 0.770 0.841 0.710 0.999 0.849 
24 0.673 0.805 0.757 0.858 0.999 0.490 
25 0.614 0.761 0.846 0.691 0.999 0.600 
26 0.643 0.783 0.731 0.843 0.999 0.896 
27 0.752 0.859 0.858 0.859 0.999 0.447 
28 0.724 0.840 0.924 0.770 0.999 0.400 
29 0.598 0.748 0.969 0.609 0.999 0.748 
30 0.591 0.743 0.758 0.729 0.999 0.600 
Mean 0.636 0.774 0.782 0.792 0.999 0.705 
SD 0.081 0.062 0.121 0.108 9.52£10–5 0.389  
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presence of the mandibular canal on slices where cortication is visible, 
and subsequently accurately interpolate the position of the canal in 
between. Higher degrees of cortication of the MC were observed on 
CBCTs acquired using a High Resolution (HR) acquisition protocol; a 
finding that was further supported by Zaki et al. [35]. 

This study therefore introduces two novel concepts for MC assess
ment: segmentation using adjustable diameters and shapes for accurate 
segmentation, as well as automation using AI. This opens new doors in 
the field of digital dentistry – be it for implant placement, tooth 
extraction and/or orthognathic surgeries – where future research could 
help segment anterior branches of the mandibular neuro-vascular 
bundle up to the mandibular symphysis. Furthermore, AI could assist 
in automatically classifying and notifying clinicians of any potential 
proximity and risk associated with a given procedure. 

Despite the mandibular canal being one of the most challenging 
structures to segment on CBCT [30], results obtained in this study point 
to the benefits AI and DL technologies could bring to both researchers 
and practitioners in terms of high precision, low time-consumption and 
user-friendliness for diagnostics, surgical planning and patients’ 
follow-up. 

While AI may never fully replace experienced clinicians in their as
sessments, current results confirm its positive role in assisting both 
experienced and novice practitioners in their diagnoses, presurgical 
planning and daily patient management. 

This study does however have some limitations: since dealing with 
Artificial Intelligence requires a great deal of variability, predictions 
cannot be made as for how the algorithm will perform outside scans 
taken from the CBCT devices used for training and testing of this study, 
as well as outside the acquisition parameters used. Anatomical varia
tions are also another aspect where rigorous testing remains needed 
given the scarcity, yet crucial importance of assessing such variations. 
Future prospective of this study will focus on tackling these issues as 
well as on the subsequent segmentation of the anterior portion of the 
mandibular canal and on scans of adolescent patients presenting mixed 
dentition. 

This will in turn allow for the clinical usability of such a tool in 
planning oral and maxillofacial surgeries, helping avoid neuro-vascular 
complications and potentially help in the diagnosis of pathological 
processes affecting the neurovascular mandibular bundle. 

5. Conclusion 

The present study introduced development and validation of a novel 
AI-driven tool for fast and accurate mandibular canal segmentation on 
CBCT. The results obtained in this study could help improving pre- 
surgical planning procedures, such as for implant placement, bone 
grafting, orthognathic surgery and tooth extraction. The developed 
technique may open further doors for advanced AI development to 
automatically visualize accessory canals, anatomical variations as well 
as neurovascularisation in the symphyseal area of the mandible. 
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