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A B S T R A C T   

Objective: The present study aimed to develop and validate a tool for the automated classification of normal, 
affected, and osteonecrosis mandibular trabecular bone patterns in panoramic radiographs using convolutional 
neural networks (CNNs). 
Methods: A dataset of 402 panoramic images from 376 patients was selected, comprising 112 control radiographs 
from healthy patients and 290 images from patients treated with antiresorptive drugs (ARD). The latter was 
subdivided in 70 radiographs showing thickening of the lamina dura, 128 with abnormal bone patterns, and 92 
images of clinically diagnosed osteonecrosis of the jaw (ONJ). Four pre-trained CNNs were fined-tuned and 
customized to detect and classify the different bone patterns. The best performing network was selected to 
develop the classification tool. The output was arranged as a colour-coded risk index showing the category and 
their odds. Classification performance of the networks was assessed through evaluation metrics, receiver oper
ating characteristic curves (ROC), and a confusion matrix. Furthermore, Gradient-weighted Class Activation 
Mapping (Grad-CAM) was employed to visualise class-discriminative regions. 
Results: All networks correctly detected and classified the mandibular bone patterns with optimal performance 
metrics. InceptionResNetV2 showed the best results with an accuracy of 96 %, precision, recall and F1-score of 
93 %, and a specificity of 98 %. Overall, most misclassifications occurred between normal and abnormal 
trabecular bone patterns. 
Conclusion: CNNs offer reliable potentials for automatic classification of abnormalities in the mandibular 
trabecular bone pattern in panoramic radiographs of antiresorptive treated patients. 
Clinical significance: A novel method that supports clinical decision making by identifying sites at high risk for 
ONJ.   

1. Introduction 

The radiographic appearance of the mandibular trabecular bone 
pattern is a recurring topic of interest in dental research due to its direct 
impact on the prognosis of bone tissue-related treatments, such as dental 
implant placement (Nicolielo et al., 2020). When beginning with the 
bone pattern assessment, panoramic radiographs are a useful and widely 
available diagnostic tool (Pachêco-Pereira et al., 2019; Taguchi et al., 
1997). They allow the identification of bony changes, which are caused 

by different reasons, including systemic diseases like osteoporosis or 
diabetes (Pachêco-Pereira et al., 2019), condensing osteitis (Lahoud 
et al., 2022), and the use of antiresorptive drugs (ARDs), namely 
bisphosphonates and denosumab (Moreno-Rabié et al., 2020). 

ARDs are effective medications used to manage oncological condi
tions secondary to bone metastases and osteoporosis-related fractures 
(Ruggiero et al., 2022). Their mechanism of action alters the bone 
resorption-apposition cycle by impeding osteoclast activity through 
different pathways (Baron et al., 2011), thus favouring bone apposition. 

* Corresponding author at: Karolinska Institutet, Stockholm, Sweden. 
E-mail address: reinhilde.jacobs@ki.se (R. Jacobs).   

1 Shared first authorship 

Contents lists available at ScienceDirect 

Bone Reports 

journal homepage: www.elsevier.com/locate/bonr 

https://doi.org/10.1016/j.bonr.2022.101632 
Received 27 October 2022; Accepted 28 October 2022   

mailto:reinhilde.jacobs@ki.se
www.sciencedirect.com/science/journal/23521872
https://www.elsevier.com/locate/bonr
https://doi.org/10.1016/j.bonr.2022.101632
https://doi.org/10.1016/j.bonr.2022.101632
https://doi.org/10.1016/j.bonr.2022.101632
http://creativecommons.org/licenses/by/4.0/


Bone Reports 17 (2022) 101632

2

Consequently, the use of these drugs has been associated with radio
graphic findings on panoramic radiographs (Moreno-Rabié et al., 2020; 
Ruggiero et al., 2022) and the development of a side effect known as 
Medication-Related Osteonecrosis of the Jaws (MRONJ) (Marx, 2003; 
Ruggiero et al., 2022). The latter can be clinically identified as exposed 
bone in the oral cavity present for more than eight weeks in patients 
treated with ARD (Ruggiero et al., 2014, 2022). 

Patients receiving ARD treatment and without bone exposure may 
show in their panoramic images, osteosclerosis, thickening of the lamina 
dura and of the mandibular cortical, osteolytic areas, persistence of the 
extraction socket, and widening of the periodontal ligament space 
(Moreno-Rabié et al., 2020). On the other hand, MRONJ lesions show 
sclerosis, lytic changes, periosteal reaction, and sequestrum formation 
(Walton et al., 2019). These radiographic findings are important to 
identify, specially before the onset of osteonecrosis since some may act 
as predisposing factors for its occurrence. In fact, heterogeneous (Gaêta- 
Araujo et al., 2021) and sclerotic trabecular bone patterns (Kubo et al., 
2018; Moreno-Rabié et al., 2022) have been identified as risk factors for 
MRONJ. 

It is in the identification of these radiographic findings that clinicians 
could benefit from an objective and automated approach. The role of 
deep learning, specifically with convolutional neural networks (CNNs), 
has gained great importance in the classification, detection, and seg
mentation of objects of interest in medical imaging (Yamashita et al., 
2018), showing promising results in dental applications both with two- 
and three-dimensional images. For instance, CNNs have been applied to 
automatically detect and segment teeth (Kuwada et al., 2020; Leite 
et al., 2021; Vranckx et al., 2020) and cystic lesions (Kwon et al., 2020) 
in panoramic radiographs. Moreover, examples of applications of CNNs 
in Cone-Beam Computed Tomography (CBCT) include, mandibular 

canal segmentation (Lahoud et al., 2022) and tooth segmentation and 
classification (Shaheen et al., 2021). 

Based on the prior evidence, the main aim of this study is to develop 
and validate a tool for the automated classification of normal, affected, 
and osteonecrosis mandibular trabecular bone patterns in panoramic 
images using CNNs. 

2. Material and methods 

2.1. Study design and settings 

The ethical committee of UZ/KU Leuven approved the elaboration of 
this retrospective cohort study (reference number: MP018766) and 
waived the need for informed consent. In addition, the World Medical 
Association Declaration of Helsinki and the standards of the Institutional 
Review Board were obeyed. To perform this study, panoramic radio
graphs were collected from patients treated in the department of oral 
and maxillofacial surgery at the University Hospitals of Leuven in 
Belgium. 

2.2. Dataset 

Panoramic radiographs were obtained from patients older than 18 
years, treated with at least one administration of ARD, who fit into one 
of the following three groups, (1) showing thickening of the lamina dura 
(TLD), (2) abnormal bone pattern (ABP) such as bone sclerosis or 
persistence of the extraction socket, or (3) presenting with medication- 
related osteonecrosis of the jaw (MRONJ). Clinically, the first two pa
tient groups had at the time of radiographic acquisition absence of bone 
exposure in the oral cavity, while the third group had a diagnosed 

Fig. 1. Workflow from image collection to the final number of images used for training, validation and testing of the algorithms. Once collected, the images were 
classified into different groups, areas of interest of 512 × 512 pixels were selected and augmentation techniques were performed until the final number of 10,000 
images was reached. 
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MRONJ lesion with consequent clinical bone exposure (Ruggiero et al., 
2014). In addition, a control group of healthy patients without ARD 
treatment, absence of maxillofacial pathologies, and with a normal bone 
pattern, was selected. These images were acquired with two different 
panoramic radiographic machines (Vista Pano S Ceph, Durr Dental, 
Bissingen-Bietigheim, Germany and Promax 2D, Planmeca, Helsinki, 
Finland), had a dimension of 2880 × 1504 pixels, and were anonymized 
at the time of export. Their indication was diagnosis and/or treatment 
planning for reasons other than the participation to this study. 

A dataset of 402 panoramic images from 376 patients were selected. 
The mean age of the patients was 61 years (SD ± 18.6, range 25–94) in 
the control group, 64 years (SD ± 13.8, range 18–94) in the TLD, 69 
years (SD ± 9.6, range 38–91) in the ABP, and 70 years (SD ± 10.3, 
range 48–91) in the MRONJ group. From the total images, 112 belonged 
to healthy control patients and 290 to patients treated with ARDs. The 
latter group was subdivided in 70 radiographs showing thickening of the 
lamina dura, 128 with abnormal bone pattern, and 92 images of clini
cally diagnosed osteonecrosis of the jaw. 

Once all images were collected, mandibular regions of interest 
(ROIs) of 512 × 512 pixels were cropped using GIMP software (version 
2.10.22, GIMP Development Team, CA, USA), resulting in 236 croppings 
from the control group, 126 with thickened lamina dura, 251 with 
abnormal bone pattern, and 131 cut-offs with osteonecrosis of the jaw. 
The image selection, cropping, and labelling was performed by a general 
dentist (CMR) and revised by a dentomaxillofacial radiologist (RJ) with 
30 years of experience, serving as ground truth. The complete dataset 
was randomly divided into three sets using the python split-folders li
brary (version 0.5.1, licensed from MIT, MA, USA). The same proportion 
of images from each group was assigned to each set, resulting in 536 
images in the training set (70 % of the images of each group), 74 images 
in the validation set (10 %), to test the performance of the models during 
the training phase, and 134 images in the test set (20 %), used to eval
uate the performance of the models by comparing the results with the 
ground truth data. 

Due to the limited dataset, data augmentation was performed using 
an open source Python library, Albumentations augmentation library 
(Buslaev et al., 2020). Transformations from pixel- to spatial-level were 
implemented to prevent overfitting and provide optimal results. 
Augmentation methods led to a dataset of 10,000 images. The networks 
were trained and validated with 7000 (70 % of dataset) and 1000 (10 % 
of dataset) images, respectively. The remaining 2000 images (20 % of 
dataset) were used as test set with 500 images obtained for each of the 
four classes. Fig. 1 shows the workflow until reaching the final dataset. 

2.3. AI framework 

Three popular very deep convolutional neural networks and one 
mobile design CNN architecture for resource constrained environments 
were selected to perform the classification task in the present study. The 
selected networks and their layer numbers were as follows, 
ResNet152V2 (n = 152) (He et al., 2016), InceptionResNetV2 (n = 164) 
(Szegedy et al., 2016), Densenet201 (n = 201) (Huang et al., 2017), and 
MobileNetV2 (n = 53) (Sandler et al., 2018). 

The models were implemented through Keras library and its appli
cations (Chollet and Others, 2015) using transfer learning methods, pre- 
designed models and pre-trained weights. The selected networks were 
designed based on a variation of deep residual learning principle (He 
et al., 2016) and pretrained with ImageNet database (Russakovsky et al., 
2015).Once the models were extracted from Keras library, they were 
customized by replacing the classification head with a 512-unit dense 
layer, the ‘Sigmoid’ activation function using ‘He_uniform’ as the kernel 
initializer, a 25 % dropout layer, and a fully connected layer with 
‘Softmax’ activation function and four outputs. The last modification 
aimed to homologate the number of classes in the dataset. All models' 
layers were set to be untrainable with the exception of the last 
customized layer. The datasets were read, pre-processed and resized to a 

resolution of 256 × 256 pixels using OpenCV (Bradski, 2000), Mat
plotlib (Hunter, 2007) and Numpy libraries (Harris et al., 2020). Then, 
they were normalized to a fixed range (0,1) for training, validation, and 
test phases. Training of the models was performed with categorical 
cross-entropy as the loss function, Adam's algorithm as the optimizer 
with an initial learning rate of 0.001, a batch size of 32, and a weight 
decay parameter of 2e-4. The models achieved convergence at different 
epochs by controlling the validation loss using early stopping with the 
patience rate of 30. 

The best performing model was selected to develop a desktop clas
sification tool. The tool was developed using PyQt5 library (version 
5.15.7, Riverbank Computing Limited, Dorchester, UK), a set of cross- 
platform libraries in C++ that provides high-level application pro
gramming interfaces (APIs). The output was presented as a colour-coded 
clinical risk index to provide clinicians with a straightforward scale to 
determine the referral and treatment needs of individual patients un
dergoing treatment with ARD. The colour-coded classification indicated 
in green a normal trabecular bone pattern. Yellow showed thickening of 
the lamina dura as an indicator of bone changes induced by anti
resorptive drugs with an initial advice for a cautionary surgical 
approach. Orange referred to an abnormal bone pattern attributed to the 
use of antiresorptive drugs and indicates potential negative bone 
remodelling with a warning to limit surgical trauma to that area. Finally, 
red would imply recognition of osteonecrosis of the mandible. The 
colour classification was accompanied by a relative probability for the 
region of interest. 

Modelling was performed using Keras deep learning framework 
(version 2.10.0)(Chollet and Others, 2015), Tensorflow (version 2.10.0) 
and tensorflow-gpu (version 2.10.0) (Abadi et al., 2016) and imple
mented on an Intel(R) Xeon(R) W-2104 CPU@3.20GHz 3.19 GHz with 
32.0 GB Ram, and a graphic card of NVIDIA Quadro P4000 GPU (NVI
DIA Corporation, U.S.A) with a memory of 8 GB GDDR5. 

2.4. Evaluation metrics 

The following multiclass classification metrics (Grandini et al., 2020) 
were used to evaluate the performance of the CNN models on the test 
dataset:  

• Accuracy: percentage of correctly classified images considering the 
whole sample. 

Accuracy =
TP + TN

TP + TN + FP + FN    

• Precision: percentage of correctly classified positives from all 
assigned positives. 

(Precision) =
TP

TP + FP    

• Recall (Sensitivity): percentage of correctly classified positives from 
the ground truth. 

(Recall) =
TP

TP + FN   

• F1-score: weighted average between precision and recall in per
centage. 

(F1-score)= 2 •
( Precesion•Recall

Precision+Recall
)

• Specificity: percentage of correctly classified negatives from the 
ground truth. 

(Specificity) =
TN

TN + FP 
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where true positive (TP) indicates the correctly classified images among 
the different categories, true negative (TN), the number of images where 
the model correctly classified as not belonging to a group, false positive 
(FP), the number of the images where the network misclassified as 

belonging to a group, and false negative (FN), express the classifications 
where the model incorrectly classified an image as not belonging to a 
group, but it did belong. In other words, these values assess the ability of 
the system to classify the images properly. 

The models were further assessed using tf-keras-vis library (version 
0.8.2, MIT Licence, MA, USA) to implement the explainable artificial 

Table 1 
Classification metrics used to evaluate the performance of the CNN models on the test dataset. These values were obtained by comparing the results of the classification 
with the ground truth (mean, 95 % CI).  

Model Parameters Accuracy (%) Precision (%) F1-Score (%) Recall (%) (sensitivity) Specificity (%) 

InceptionResNetV2  55.1 M  0.96 (0.93, 0.99)  0.93 (0.84, 1)  0.93 (0.87, 0.99)  0.93 (0.83,1)  0.98 (0.94, 1) 
ResNet152V2  59.3 M  0.95 (0.92, 0.99)  0.91 (0.84, 0.98)  0.91 (0.82, 0.99)  0.91 (0.79, 1)  0.97 (0.94, 1) 
Densenet201  18.8 M  0.88 (0.78, 0.98)  0.77 (0.55, 0.98)  0.76 (0.57, 0.94)  0.76 (0.55, 0.96)  0.92 (0.83, 1) 
MobileNetV2  2.9 M  0.96 (0.93, 1)  0.92 (0.85, 0.99)  0.92 (0.84, 0.99)  0.92 (0.77, 1)  0.98 (0.97, 0.99)  

Fig. 2. Training history of the networks depicting the loss and accuracy values of the models at different epochs during training and validation phases.  
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intelligence (XAI) elements, were a Gradient-weighted Class Activation 
Mapping (Grad-CAM) (Selvaraju et al., 2020) was obtained to provide a 
visual localization of class-discriminative regions. In addition, a 
Receiver Operating Characteristic (ROC) curve and confusion matrix 
were acquired with Scikit-learn library (Pedregosa et al., 2011) from 
each model to evaluate their classification performance. 

2.5. Statistical analysis 

RStudio version 4.0.4 (RStudio, Boston, MA US) was used to perform 
the statistical analysis. The metric values were tested for normality using 
Shapiro–Wilk test and visual inspection with a Q-Q Plot. Then, the 
Kruskal Wallis test was implemented to test the statistical significance of 
the accuracy, precision, F1-score, recall (sensitivity), and specificity 
between the models. A p-value ≤0.05 was considered statistically 
significant. 

3. Results 

The results of the evaluation metrics computed for each network on 
the test set are presented in Table 1. Overall, the best results were 
achieved by InceptionResNetV2 and MobileNetV2 with an accuracy of 
96 %, while Densenet201 showed the lowest performance with 88 % of 
accuracy. Although, when performing the Kruskal Wallis test, the sta
tistical computations demonstrated that there was no significant dif
ference between the accuracy (p = 0.152), precision (p = 0.150), recall 
(p = 0.119), F1-score (p = 0.164), and specificity (p = 0.117) of the 
models. Given the slightly better classification metrics, InceptionRes
NetV2 was chosen as the CNN with which the classification model would 
be developed. An example of the interface can be seen in Fig. 6. 

The training history of the models is presented in Fig. 2. The models' 
performance improved as the number of epochs increased. A slight 

overfitting was observed in the accuracy and loss values of the training 
and validation sets in each model. Moreover, convergence was achieved 
at different epochs, being in ResNet152V2 at 29, in InceptionResNetV2 
at 60, in MobileNetV2 at 46, and in DenseNet201 at 31 epochs. 

Fig. 3 shows the ROC curves of each network for different classifi
cations. The accuracy of classification, based on the area under the 
curves, was the highest in MobileNetV2 (mean 0.95), followed with a 
minor difference by InceptionResNetV2 (mean 0.947), ResNet152V2 
(mean 0.937), and lastly, DenseNet201 (mean 0.84). Yet, Inception
ResNetV2 had the best performance for the classification of ABP, while 
MobileNetV2 achieved the best performance when classifying MRONJ, 
TLD, and control groups. Additionally, the classification performance of 
the models was plotted through a confusion matrix (Fig. 4), comparing 
the class predictions against the ground truth. 

The heat maps of the two best performing networks, InceptionRes
NetV2 and MobileNetV2, are presented in Fig. 5 using a class activation 
map. Both networks assigned the highest activation regions to the dis
tinguishing features of each trabecular bone pattern, displayed with 
warm colours in the figure. InceptionResNetV2 was more successful in 
combining the detection of globally and locally distributed features to 
discriminate the classes, while MobileNetV2 demonstrated a better 
performance in the detection of complex localised features. 

4. Discussion 

Convolutional neural networks have become a popular technique in 
the field of dentistry for detecting and classifying various pathologies 
and objects on radiographs (Estai et al., 2022a; Sivasundaram and 
Pandian, 2021; Sukegawa et al., 2021; Yang et al., 2020). Hence, we 
proposed in this study the use of CNNs for the automated classification 
of trabecular bone patterns in patients treated with antiresorptive drugs 
and who developed MRONJ. To the best of our knowledge, this is the 

Fig. 3. Receiver operating characteristic curves (ROC) of the models on the test dataset. The Area Under the Curve (AUC) for each class is shown as well as the micro 
and macro-averages across all classes. 
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first attempt to use an artificial intelligence model for this purpose. 
All networks successfully classified all bone patterns and showed no 

statistical differences in their performance. From them, InceptionRes
NetV2 has already been used for dental applications, showing favour
able results in automatic caries detection (accuracy of 0.87) (Estai et al., 
2022b), and in the classification of mesiodens (accuracy 0.92) (Ahn 
et al., 2021) and teeth (accuracy 0.94) (Rajee and Mythili, 2021). 
Nevertheless, one of the main disadvantages of working with very deep 
networks like this one, is the need for computational power that is not 
always available in clinical settings and research laboratories (Sandler 
et al., 2018; Thompson et al., 2020). For this reason, we tested Mobi
leNetV2, which, while maintaining its complexity, operates with fewer 
parameters and demands less sophisticated hardware (Sandler et al., 
2018). Our results support the latter as a reliable substitute, as this 
network achieved the highest average AUC. 

Despite achieving high accuracies, most of the misclassifications 
occurred between the abnormal bone pattern and the control images in 
all models. Perhaps an explanation lies in the distinctive features of each 
bone pattern. Most notable are the contrast differences. For instance, 
osteonecrosis lesions are bounded by clear radiolucent and radiopaque 
lines, resulting in high-contrast edges being easier to identify by both the 
human eye and the networks. On the other hand, abnormal patterns 
have less pronounced radiopaque areas distributed along the trabeculae 

which are less distinguishable from the homogeneous surface of the 
normal bone pattern. Given that the algorithms recognize high-contrast 
edges as seen in the Grad-CAM, images with normal and abnormal bone 
patterns become more challenging to classify. 

Another explanation may be found in the images selected for each 
group. In the control group, the images were from a slightly younger 
population showing mostly sites with a natural dentition and with only 
11 % of the ROIs involving fully edentulous areas. While 30 % of the 
ROIs in the abnormal bone pattern displayed such condition. When 
looking at the edentulous areas in the control group, InceptionResNetV2 
misclassified 32 % of them into ABP. Furthermore, it was seen in the 
activation maps of several control images that teeth acted as a con
founding factor with the area of interest resting on them, suggesting that 
the indicative feature of the control group was the presence of teeth and 
rather than the appearance of the bone. 

Although there were no significant differences between the CNNs, 
InceptionResNetV2 was chosen for the development of the automated 
tool because of its better metrics and performance in ABP classification. 
While the other categories are important to recognize, they represent 
less of a challenge for the clinician and our interest lies in the early 
identification of sclerotic patterns as a risk factor for osteonecrosis 
(Moreno-Rabié et al., 2022). This CNN showed a superior performance 
in the detection of abnormal patterns due to the presence of large and 

Fig. 4. Multiclass confusion matrix of the test dataset (2000 images in total, 500 images for each class) for the four networks (InceptionResNetV2, ResNet152V2, 
DenseNet201, and MobileNetV2). The diagonal values refer to the correctly classified images (true positives), and the off-diagonal values depict misclassifications 
(false positives). Elements were colour-mapped according to the maximum and minimum values at the right colour-map bar. 
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Fig. 5. Gradient-weighted Class Activation Mapping (Grad-CAM) of the InceptionResNetV2 (e., f., g., h.) and the MobileNetV2 (i., j., k., l.) for a. control, b. thickened 
lamina dura (TLD), c. abnormal bone pattern (ABP), and d. osteonecrosis (MRONJ) images. The regions of interest for the algorithm are indicated by means of a 
warm and cold colour code. Being the warm regions, those in which greater attention was paid to the image features (high-weighted) and the cold regions in which 
there was less interest (low-weighted). 

Fig. 6. Display of the interface using a panoramic radiograph of a 70-year-old patient presenting with clinical bone exposure in the right posterior mandible. No 
other lesions were observed on the clinical examination. Once the image is imported, manual selection of different regions of interest (a, b) can be performed. The 
output will show the category to which the selected trabeculated region belongs together with the corresponding probability in the form of a colour-coded index. 
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small kernels at different equivalent depths in its architecture (Szegedy 
et al., 2016), allowing the efficient extraction and merging of globally 
and locally distributed features, such the mild radiopacities spread over 
the trabecular bone seen in these images. Additionally, to improve the 
performance of the model, an expert function could be added to the 
software where human-supervised corrections can be incorporated to 
learn from new data and rectify incorrect predictions. 

Radiographic findings in patients treated with ARD are not uncom
mon (Moreno-Rabié et al., 2020). In this regard, the colour-coding sys
tem is of interest when these patients are to undergo tooth extraction, as 
it allows for easy diagnostic filtering. The presence of a green light or 
normal bone pattern will indicate a favourable scenario at that tooth 
extraction site, as this does not increase the likelihood of MRONJ (Arce 
et al., 2009; Moreno-Rabié et al., 2022; Nicolatou-Galitis et al., 2020). 
Furthermore, while the presence of thickening of the lamina dura is 
presented as a radiographic and pharmacokinetic marker indicating 
intake of these drugs (Klingelhöffer et al., 2016; Moreno-Rabié et al., 
2022), bone changes related to antiresorptive drugs, such as osteo
sclerosis, have been associated with an increased risk for MRONJ (Arce 
et al., 2009; Moreno-Rabié et al., 2022; Nicolatou-Galitis et al., 2020). 
Finally, a red colour would indicate a settled osteonecrosis lesion in 
which referral to a specialized clinic for timely treatment is necessary. 

Future applications of this diagnostic tool include evaluation prior to 
implant placement in patients treated with ARDs or early identification 
of MRONJ prior to bone exposure. It is worth noting that all regions of 
interest involving osteonecrosis belonged to mature lesions, which 
showed sequestrum formation, obvious lytic areas and osteosclerosis. 
Since the radiographic appearance of MRONJ is variable and does not 
necessarily correlate with clinical staging (Bedogni et al., 2012; Hamada 
et al., 2014), less obvious lesions should be presented to the network to 
assess possible differences between these and an abnormal bone pattern, 
given that mild radiographic osteonecrosis lesions are almost indistin
guishable from sclerotic or abnormal bone patterns by the human eye. 
Consequently, some authors have suggested that these sites are latent 
osteonecrosis lesions that remain unexposed to the oral cavity (Bedogni 
et al., 2012; Moreno-Rabié et al., 2022; Nicolatou-Galitis et al., 2020; 
Saia et al., 2010). 

Further studies should aim to overcome the limitations of this 
investigation. To prevent overfitting during training phase and improve 
the classification performance of the networks, the models should be less 
generalized by training them with a larger dataset (Yamashita et al., 
2018). The dataset of this study was limited as it belonged to only one 
centre (Ahn et al., 2021) and given that MRONJ has a rather low inci
dence (Khan et al., 2015; Ruggiero et al., 2014). Although a novel 
augmentation method was used (Buslaev et al., 2020), a variety of data 
from different panoramic devices and with different scanning parame
ters are required to prevent biased classification. Moreover, the 
restricted hardware set up limited the employment of more trainable 
layers and increasing the batch size. Upgrading and utilizing a more 
powerful hardware would be imperative to improve the training results. 
Finally, the Grad-CAM visualisation showed that high contrast and sharp 
edges attract the highest attention of the models. Through employing 
feature selection, it would be possible to filter irrelevant or redundant 
features such as teeth, which are not involved in the classification of 
bone patterns. Hence, minimizing misclassification of the models. 

5. Conclusion 

In the present study, four different CNN architectures successfully 
classified different mandibular trabecular bone patterns showing reli
able potentials for the identification of abnormalities in panoramic ra
diographs of antiresorptive treated patients. The best network, 
InceptionResNetV2, was selected for the development of a diagnostic 
tool. The proposed method is expected to support clinical decision 
making when alarming trabecular patterns are recognized, thereby 
minimizing complications with early diagnosis and treatment planning. 
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Klingelhöffer, C., Klingelhöffer, M., Müller, S., Ettl, T., Wahlmann, U., 2016. Can dental 
panoramic radiographic findings serve as indicators for the development of 
medication-related osteonecrosis of the jaw? Dentomaxillofac. Radiol. 45, 20160065 
https://doi.org/10.1259/dmfr.20160065. 

Kubo, R., Ariji, Y., Taniguchi, T., Nozawa, M., Katsumata, A., Ariji, E., 2018. Panoramic 
radiographic features that predict the development of bisphosphonate-related 
osteonecrosis of the jaw. Oral Radiol. 34, 151–160. https://doi.org/10.1007/ 
s11282-017-0293-9. 

Kuwada, C., Ariji, Y., Fukuda, M., Kise, Y., Fujita, H., Katsumata, A., Ariji, E., 2020. Deep 
learning systems for detecting and classifying the presence of impacted 
supernumerary teeth in the maxillary incisor region on panoramic radiographs. Oral 
surgOral Med. Oral Pathol. Oral Radiol. 130, 464–469. https://doi.org/10.1016/j. 
oooo.2020.04.813. 

Kwon, O., Yong, T.-H., Kang, S.-R., Kim, J.-E., Huh, K.-H., Heo, M.-S., Lee, S.-S., Choi, S.- 
C., Yi, W.-J., 2020. Automatic diagnosis for cysts and tumors of both jaws on 
panoramic radiographs using a deep convolution neural network. Dentomaxillofac. 
Radiol. 49, 20200185. https://doi.org/10.1259/dmfr.20200185. 

Lahoud, P., Diels, S., Niclaes, L., Van Aelst, S., Willems, H., Van Gerven, A., Quirynen, M., 
Jacobs, R., 2022. Development and validation of a novel artificial intelligence driven 
tool for accurate mandibular canal segmentation on CBCT. J. Dent. 116, 103891 
https://doi.org/10.1016/j.jdent.2021.103891. 

Leite, A.F., Gerven, A.Van, Willems, H., Beznik, T., Lahoud, P., Gaêta-Araujo, H., 
Vranckx, M., Jacobs, R., 2021. Artificial intelligence-driven novel tool for tooth 
detection and segmentation on panoramic radiographs. Clin. Oral Investig. 25, 
2257–2267. https://doi.org/10.1007/s00784-020-03544-6. 

Marx, R.E., 2003. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular 
necrosis of the jaws: a growing epidemic. J. Oral Maxillofac. Surg. 61, 1115–1117. 
https://doi.org/10.1016/S0278-2391(03)00720-1. 
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Pachêco-Pereira, C., Almeida, F.T., Chavda, S., Major, P.W., Leite, A., Guerra, E.N.S., 
2019. Dental imaging of trabecular bone structure for systemic disorder screening: a 
systematic review. Oral Dis. https://doi.org/10.1111/odi.12950. 

Pedregosa, F., Varoquaux, Gael, Gramfort, A., Vincent, M., Thirion, B., Grisel, O., 
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: machine 
learning in Python. J. Mach. Learn. Res. 12, 2825–2830. 

Rajee, M.V., Mythili, C., 2021. Dental image segmentation and classification using 
inception Resnetv2. IETE J. Res. 1–17 https://doi.org/10.1080/ 
03772063.2021.1967793. 

Ruggiero, S.L., Dodson, T.B., Fantasia, J., Goodday, R., Aghaloo, T., Mehrotra, B., 
O’Ryan, F., 2014. American Association of Oral and Maxillofacial Surgeons Position 
Paper on medication-related osteonecrosis of the Jaw—2014 update. J. Oral 
Maxillofac. Surg. 72, 1938–1956. https://doi.org/10.1016/j.joms.2014.04.031. 

Ruggiero, S.L., Dodson, T.B., Aghaloo, T., Carlson, E.R., Ward, B.B., Kademani, D., 2022. 
American Association of Oral and Maxillofacial Surgeons’ position paper on 
medication-related osteonecrosis of the Jaws—2022 update. J. Oral Maxillofac. 
Surg. 80, 920–943. https://doi.org/10.1016/j.joms.2022.02.008. 

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., 
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L., 2015. ImageNet large 
scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252. https://doi. 
org/10.1007/s11263-015-0816-y. 

Saia, G., Blandamura, S., Bettini, G., Tronchet, A., Totola, A., Bedogni, G., Ferronato, G., 
Nocini, P.F., Bedogni, A., 2010. Occurrence of bisphosphonate-related osteonecrosis 
of the jaw after surgical tooth extraction. J. Oral Maxillofac. Surg. 68, 797–804. 
https://doi.org/10.1016/j.joms.2009.10.026. 

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C., 2018. MobileNetV2: 
inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. IEEE, pp. 4510–4520. https://doi.org/ 
10.1109/CVPR.2018.00474. 

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2020. Grad- 
CAM: visual explanations from deep networks via gradient-based localization. Int. J. 
Comput. Vis. 128, 336–359. https://doi.org/10.1007/s11263-019-01228-7. 

Shaheen, E., Leite, A., Alqahtani, K.A., Smolders, A., Van Gerven, A., Willems, H., 
Jacobs, R., 2021. A novel deep learning system for multi-class tooth segmentation 
and classification on cone beam computed tomographyA validation study. J. Dent. 
115, 103865 https://doi.org/10.1016/j.jdent.2021.103865. 

Sivasundaram, S., Pandian, C., 2021. Performance analysis of classification and 
segmentation of cysts in panoramic dental images using convolutional neural 
network architecture. Int. J. Imaging Syst. Technol. 31, 2214–2225. https://doi.org/ 
10.1002/ima.22625. 

Sukegawa, S., Yoshii, K., Hara, T., Matsuyama, T., Yamashita, K., Nakano, K., 
Takabatake, K., Kawai, H., Nagatsuka, H., Furuki, Y., 2021. Multi-task deep learning 
model for classification of dental implant brand and treatment stage using dental 
panoramic radiograph images. Biomolecules 11, 815. https://doi.org/10.3390/ 
biom11060815. 

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-v4, inception-ResNet 
and the impact of residual connections on learning. In: 31st AAAI confArtif. Intell., 
2017 AAAI, pp. 4278–4284. 

Taguchi, A., Tanimoto, K., Suei, Y., Otani, K., Wadamoto, M., Akagawa, Y., Wada, T., 
Rohlin, M., 1997. Observer agreement in the assessment of mandibular trabecular 
bone pattern from panoramic radiographs. Dentomaxillofac. Radiol. 26, 90–94. 
https://doi.org/10.1038/sj.dmfr.4600213. 

Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F., 2020. The Computational Limits 
of Deep Learning. https://doi.org/10.48550/arxiv.2007.05558. 

Vranckx, M., Van Gerven, A., Willems, H., Vandemeulebroucke, A., Ferreira Leite, A., 
Politis, C., Jacobs, R., 2020. Artificial intelligence (AI)-driven molar angulation 
measurements to predict third molar eruption on panoramic radiographs. Int. J. 
Environ. Res. Public Health 17, 3716. https://doi.org/10.3390/ijerph17103716. 

Walton, K., Grogan, T.R., Eshaghzadeh, E., Hadaya, D., Elashoff, D.A., Aghaloo, T.L., 
Tetradis, S., 2019. Medication related osteonecrosis of the jaw in osteoporotic vs 
oncologic patients—quantifying radiographic appearance and relationship to clinical 
findings. Dentomaxillofac. Radiol. 48, 20180128. https://doi.org/10.1259/ 
dmfr.20180128. 

Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K., 2018. Convolutional neural networks: 
an overview and application in radiology. Insights Imaging 9, 611–629. https://doi. 
org/10.1007/s13244-018-0639-9. 

Yang, H., Jo, E., Kim, H.J., Cha, I., Jung, Y.-S., Nam, W., Kim, J.-Y., Kim, J.-K., Kim, Y.H., 
Oh, T.G., Han, S.-S., Kim, H., Kim, D., 2020. Deep learning for automated detection 
of cyst and tumors of the jaw in panoramic radiographs. J. Clin. Med. 9, 1–14. 
https://doi.org/10.3390/jcm9061839. 

S. Baseri Saadi et al.                                                                                                                                                                                                                           

https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1002/jbmr.2405
https://doi.org/10.1259/dmfr.20160065
https://doi.org/10.1007/s11282-017-0293-9
https://doi.org/10.1007/s11282-017-0293-9
https://doi.org/10.1016/j.oooo.2020.04.813
https://doi.org/10.1016/j.oooo.2020.04.813
https://doi.org/10.1259/dmfr.20200185
https://doi.org/10.1016/j.jdent.2021.103891
https://doi.org/10.1007/s00784-020-03544-6
https://doi.org/10.1016/S0278-2391(03)00720-1
https://doi.org/10.1007/s00784-020-03423-0
https://doi.org/10.1007/s00784-020-03423-0
https://doi.org/10.1038/s41598-022-15254-y
https://doi.org/10.1038/s41598-022-15254-y
https://doi.org/10.1111/odi.13294
https://doi.org/10.1111/clr.13551
https://doi.org/10.1111/odi.12950
http://refhub.elsevier.com/S2352-1872(22)00466-1/rf202210290452241404
http://refhub.elsevier.com/S2352-1872(22)00466-1/rf202210290452241404
http://refhub.elsevier.com/S2352-1872(22)00466-1/rf202210290452241404
http://refhub.elsevier.com/S2352-1872(22)00466-1/rf202210290452241404
https://doi.org/10.1080/03772063.2021.1967793
https://doi.org/10.1080/03772063.2021.1967793
https://doi.org/10.1016/j.joms.2014.04.031
https://doi.org/10.1016/j.joms.2022.02.008
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.joms.2009.10.026
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1016/j.jdent.2021.103865
https://doi.org/10.1002/ima.22625
https://doi.org/10.1002/ima.22625
https://doi.org/10.3390/biom11060815
https://doi.org/10.3390/biom11060815
http://refhub.elsevier.com/S2352-1872(22)00466-1/rf202210290441456544
http://refhub.elsevier.com/S2352-1872(22)00466-1/rf202210290441456544
http://refhub.elsevier.com/S2352-1872(22)00466-1/rf202210290441456544
https://doi.org/10.1038/sj.dmfr.4600213
https://doi.org/10.48550/arxiv.2007.05558
https://doi.org/10.3390/ijerph17103716
https://doi.org/10.1259/dmfr.20180128
https://doi.org/10.1259/dmfr.20180128
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.3390/jcm9061839

	Convolutional neural network for automated classification of osteonecrosis and related mandibular trabecular patterns
	1 Introduction
	2 Material and methods
	2.1 Study design and settings
	2.2 Dataset
	2.3 AI framework
	2.4 Evaluation metrics
	2.5 Statistical analysis

	3 Results
	4 Discussion
	5 Conclusion
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	Data availability
	References


